• Title/Summary/Keyword: Helical tubes

Search Result 31, Processing Time 0.025 seconds

Experimental Study of Friction Factors for Laminar, Transition, and Turbulent Flow Regimes in Helical Coil Tubes (헬리컬 코일 튜브에서의 층류, 천이, 난류 영역의 마찰계수에 대한 실험적 연구)

  • Park, Won Ki;Kim, Taehoon;Do, Kyu Hyung;Han, Yong-Shik;Choi, Byung-Il
    • Journal of the Korean Society of Safety
    • /
    • v.33 no.1
    • /
    • pp.7-15
    • /
    • 2018
  • The friction factors according to the flow regimes in helical coil tubes depend on the coil diameter, the tube diameter, and the coil pitch. In previous studies, correlations for the laminar flow regime in helical coil tubes have been proposed. However, studies on the transition flow regime and the turbulent flow regime are insufficient and further researches are necessary. In this study, characteristics of the friction factors for the laminar, transition and turbulent flow regimes in helical coil tubes were experimentally investigated. The helical coil tubes used in the experiments were made of copper. The curvature ratios of the helical coil tubes, which means the ratio of helical coil diameter to inner diameter of the helical coil tube are 24.5 and 90.9. Experiments were carried out in the range of $529{\leq}Re{\leq}39,406$ to observe the flows from the laminar to the turbulent regime. The friction factors were obtained by measuring the differential pressures according to the flow rates in the helical coil tubes while varying the curvature ratios of the helical coil tubes. Experimental data show that the friction factors for the helical coil tube with 24.5 in the curvature ratio of the helical coil tube were larger than those in the straight tube in all flow regimes. As the curvature ratio of the helical coil tube increases, the friction factor in turbulent flow regime tends to be equal to that of the straight tube. In addition, it was confirmed that the transition flow regimes in the helical coil tubes were much wider than those in the straight tube, also the critical Reynolds numbers were larger than those in the straight tube. The results obtained in this experimental study can be used as basic data for studies on the water hammer phenomenon in helical coil tubes.

Fluidelastic Instability Characteristics of Helical Steam Generator Tubes

  • Jo Jong Chull;Jhung Myung Jo;Kim Woong Sik;Choi Young Hwan;Kim Hho Jung
    • Nuclear Engineering and Technology
    • /
    • v.36 no.4
    • /
    • pp.364-373
    • /
    • 2004
  • This study investigates the fluidelastic instability characteristics of helical steam generator type tubes used in operating nuclear power plants. To obtain a natural frequency, corresponding mode shape, and participation factor, modal analyses using various conditions are performed for helical type tubes. Investigated are the effects of the number of turns, the number of supports, and the status of the inner fluid on the modal and fluidelastic instability characteristics of the tubes, which are expressed in terms of the natural frequency, the corresponding mode shape, and the stability ratio.

Convective heat transfer of MWCNT / HT-B Oil nanofluid inside micro-fin helical tubes under uniform wall temperature condition

  • Kazemia, M.H.;Akhavan-Behabadi, M.A.;Nasr, M.
    • Advances in nano research
    • /
    • v.2 no.2
    • /
    • pp.99-109
    • /
    • 2014
  • Experiments are performed to investigate the single-phase flow heat transfer augmentation of MWCNT/HT-B Oil in both smooth and micro-fin helical tubes with constant wall temperature. The tests in laminar regime were carried out in helical tubes with three curvature ratios of 2R/d=22.1, 26.3 and 30.4. Flow Reynolds number varied from 170 to 1800 resulting in laminar flow regime. The effect of some parameters such as the nanoparticles concentration, the dimensionless curvature radius (2R/d) and the Reynolds number on heat transfer was investigated for the laminar flow regime. The weight fraction of nanoparticles in base fluid was less than 0.4%. Within the applied range of Reynolds number, results indicated that for smooth helical tube the addition of nanoparticles to the base fluid enhanced heat transfer remarkably. However, compared to the smooth helical tube, the average heat transfer augmentation ratio for finned tube was small and about 17%. Also, by increasing the weight fraction of nanoparticles in micro-fin helical tubes, no substantial changes were observed in the rate of heat transfer enhancement.

Heat Transfer Characteristics of Inclined Helical Coil Type Heat Exchanger (경사진 헬리컬 코일 열교환기의 열전달 특성에 관한 연구)

  • Son, Chang-Hyo;Jeon, Min-Ju;Jang, Seong-Il;Oh, Hoo-Kyu
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.31 no.6
    • /
    • pp.707-714
    • /
    • 2007
  • The heat transfer coefficient and Pressure drop during gas cooling process of $CO_2$ (R-744) in inclined helical coil copper tubes were investigated experimentally. The main components of the refrigerant loop are a receiver. a variable-speed pump. a mass flow meter, a pre-heater and a inclined helical coil type gas cooler (test section). The test section consists of a smooth copper tube of 2.45mm inner diameter. The refrigerant mass fluxes were varied from 200 to $600[kg/m^2s]$ and the inlet Pressures of gas cooler were 7.5 to 10.0 [MPa]. The heat transfer coefficients of $CO_2$ in the inclined helical coil tubes increases with the increase of mass flux and gas cooling pressure of $CO_2$. The pressure drop of $CO_2$ in the gas cooler shows a relatively good agreement with those Predicted by Ito's correlation developed for single-phase in a helical coil tube. The local heat transfer coefficient of $CO_2$ agrees well with the correlation by Pitla et al. However, at the region near pseudo-critical temperature. the experiments indicate higher values than the Pitla et al. correlation. Therefore. various experiments in the inclined helical coil tubes have to be conducted and it is necessary to develop the reliable and accurate prediction determining the heat transfer and pressure drop of $CO_2$ in the inclined helical coil tubes.

Analytic springback prediction in cylindrical tube bending for helical tube steam generator

  • Ahn, Kwanghyun;Lee, Kang-Heon;Lee, Jae-Seon;Won, Chanhee;Yoon, Jonghun
    • Nuclear Engineering and Technology
    • /
    • v.52 no.9
    • /
    • pp.2100-2106
    • /
    • 2020
  • This paper newly proposes an efficient analytic springback prediction method to predict the final dimensions of bent cylindrical tubes for a helical tube steam generator in a small modular reactor. Three-dimensional bending procedure is treated as a two-dimensional in-plane bending procedure by integrating the Euler beam theory. To enhance the accuracy of the springback prediction, mathematical representations of flow stress and elastic modulus for unloading are systematically integrated into the analytic prediction model. This technique not only precisely predicts the final dimensions of the bent helical tube after a springback, but also effectively predicts the various target radii. Numerical validations were performed for five different radii of helical tube bending by comparing the final radius after a springback.

Minimization of the Spring back in the Coiling Process of the Helical Steam Generator Tubes of Integral Reactor SMART (일체형원자로 SMART의 나선형 증기발생기 전열관 코일링 시 스프링백 최소화 방안)

  • Kim, Yong-Wan;Kim, Jong-In;Chang, Moon-Hee
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.837-842
    • /
    • 2000
  • In the coiling process of helical steam generator tubes of integral reactor SMART, a considerable amount of spring back, which induces dimensional inaccuracy and difficulty in fabrication, has been arised. In this research, an analytical model was derived to evaluate the amount of the spring back for steam generator tubes. The model was developed on the basis of beam theory and elastic-perfectly plastic material property. This model was extended to consider the effect of plastic hardening and the effect of the tensile force on the spring back phenomena. Parametric studies were performed for various design variables of steam generator tubes in order to minimize the spring back in the design stage. A sensitivity analysis has shown that the low yield strength, the high elastic modulus, the small helix diameter, and the large tube diameter result in a small amount of the spring back. The amount of the spring back can be controlled by the selection of adequate design values in the basic design stage and reduced to an allowable limit by the application of the tensile force to the tube during the coiling process.

  • PDF

Cooling Heat Transfer Characteristics of CO2 in Helical Coil Type Gas Coolers (헬리컬 코일형 가스냉각기 내 CO2의 냉각 열전달 특성)

  • Son, Chang-Hyo;Jeon, Min-Ju;Oh, Hoo-Kyu
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.31 no.6
    • /
    • pp.699-706
    • /
    • 2007
  • The cooling heat transfer coefficient and pressure drop of $CO_2$(R-744) in helical coil copper tubes were investigated experimentally The main components of the refrigerant loop are a receiver, a variable-speed pump, a mass flow meter. a pre-heater and a inclined helical coil type gas cooler (test section). The test section consists of a smooth copper tube of 2.45 and 4.55mm inner diameter The refrigerant mass fluxes were varied from 200 to $600 [kg/m^2s]$ and the inlet pressures of 9as cooler were 7.5 to 10.0 [MPa]. The heat transfer coefficients of $CO_2$ in helical coil tubes increase with the increase of mass flux and gas cooling pressure of $CO_2$. The pressure drop of $CO_2$ in the gas cooler shows a relatively food agreement with those Predicted by Ito's correlation developed for single-phase in helical coil tubes. Though a few correlation available with the data. the local heat transfer coefficient of $CO_2$ agrees well with those presented by Pitla et al. among the predictions. However at the region near pseudo-critical temperature. the experiment data indicate higher values than the Pitla et al. correlation.

Theoretical and Experimental Studies on Boiling Heat Transfer for the Thermosyphons with Various Helical Grooves

  • Han Kyuil;Cho Dong-Hyun
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.8
    • /
    • pp.1662-1669
    • /
    • 2005
  • Boiling heat transfer characteristics of a two-phase closed thermosyphons with various helical grooves are studied experimentally and a mathematical correlation is developed to predict the performance of such thermosyphons. The study focuses on the boiling heat transfer characteristics of two-phase closed thermosyphons with copper tubes having 50, 60, 70, 80, 90 internal helical grooves. A two-phase closed thermosyphon with plain copper tube having the same inner and outer diameter as those of grooved tubes is also tested for comparison. Water, methanol and ethanol are used as working fluid. The effects of the number of grooves, various working fluids, operating temperature and heat flux are investigated experimentally. From these experimental results, a mathematical model is developed. In the present model, boiling of liquid pool in the evaporator is considered for the heat transfer mechanism of the thermosyphons. And also the effects of the number of grooves, the various working fluids, the operating temperature and the heat flux are brought into consideration. A good agreement between the boiling heat transfer coefficient of the thermosyphon estimated from experimental results and the predictions from the present mathematical correlation is obtained. The experimental results show that the number of grooves, the amount of the working fluid and the various working fluids are very important factors for the operation of thermosyphons. Also, the thermosyphons with internal helical grooves can be used to achieve some inexpensive and compact heat exchangers in low temperature.

Laminar Flow in the Entrance Region of Helical Tubes Connected with Straight Ones (직관과 연결된 나선관 입구영역의 층류 유동)

  • Kim, Young-In;Park, Jong-Ho
    • The KSFM Journal of Fluid Machinery
    • /
    • v.11 no.1
    • /
    • pp.9-17
    • /
    • 2008
  • A numerical study for three-dimensional laminar flow in the entrance region of helical tubes connected with straight ones is carried out to investigate the effects of Reynolds number, pitch and curvature ratio on the oscillation periods of the flow. The fully elliptic governing equations were solved by means of a finite volume method. The fully developed laminar flow boundary condition was applied at the straight tube inlet. This results cover a curvature ratio range of 1/10${\sim}$1/320, a pitch range of 0.0${\sim}$3.2, and a Reynolds number range of 62.5${\sim}$2000. A comparison is made with previous experimental correlations and numerical data. The developments of velocity, local and average friction factors are discussed. The average friction factors are oscillatory in the entrance region of helical pipes. It has been found that the angle required for the flow to be similarly developed is most affected by the curvature ratio. The pitch and Reynolds number do not have any significant effect on the angle. The characteristic angle ${\phi}_c(={\phi}/sqrt{\delta})$, or the characteristic length to diameter ratio $s_c(=l\sqrt{\delta} cos(atan{\lambda})/d)$, can be useful to represent the development of flow in helical tubes. As the pitch increases and as the curvature ratio and Reynolds number decrease, the amplitude and the number of flow oscillations along the main streamwise direction decrease.

Fretting-wear Characteristics of Steam Generator Helical Tubes (증기발생기 나선형 전열관의 프레팅 마모 특성)

  • Jong Chull Jo;Woong Sik Kim;Hho Jung Kim;Tae Hyung Kim;Myung Jo Jhung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.4
    • /
    • pp.327-335
    • /
    • 2004
  • This study investigates the safety assessment of the potential for fretting-wear damages caused by foreign object in operating nuclear power plants. To get the natural frequency, corresponding mode shape and participation factor, modal analyses are performed for the helical type tubes with various conditions. The wear rate of helical type tube caused by foreign object is calculated using the Archard formula and the remaining life of the tube is predicted, and discussed in this study is the effect of the vibration of the tube on the remaining life of the tube. In addition, addressed is the effect of the external pressure on the vibration and fretting-wear characteristics of the tube.