• Title/Summary/Keyword: Helical Machining

Search Result 24, Processing Time 0.031 seconds

Prediction of Surface Roughness in Hole Machining Using an Endmill (엔드밀을 활용한 홀 가공 시 표면거칠기 예측에 관한 연구)

  • Chun, Se-Ho
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.10
    • /
    • pp.42-47
    • /
    • 2019
  • Helical machining is an efficient method for machining holes using an endmill. In this study, a surface roughness prediction model was constructed for improving the productivity of hole machining. Experiments were conducted to form holes by the helical machining of AL6061-T4 aluminum sheets and correlation analysis was performed to examine the relationships between the variables based on the measured results. Meanwhile, a regression analysis technique was used to construct and evaluate the prediction model. Through these analyses, the parameter which has the greatest influence on the surface roughness when the hole is formed by the helical machining is the feed, followed by the number of revolutions of the endmill. Moreover, for the axial feed of the endmill, it was concluded that the influence of the surface roughness is small compared to the other two parameters but it is a factor worth considering to improve the accuracy when constructing the predictive model.

Precision Electric Discharge Machining of a Cold Forging Die for Helical Gear Manufacturing (헬리컬기어 냉간단조 금형의 정밀방전가공)

  • Kwon J.J.;Joun B.Y.;Joun M.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.158-161
    • /
    • 2005
  • In this paper, the precision electric discharge machining technology, the powder electric discharge machining technology, is applied to making a cold forging die for making the helical type of clutch gear. Various working conditions are investigated with emphasis on reduction of the electrode wear and enhancement of the surface roughness. Through the research work, the key technology of making the helical gear forging dies is achieved.

  • PDF

Geometrical Analysis of Helical Groove Machining for Manufacture of Twist Drill (트위스트 드릴제작을 위한 나선형 홈가공의 기하학적인 해석)

  • 고성림
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.7
    • /
    • pp.1643-1653
    • /
    • 1994
  • To facilitate the manufacturing of dull using CNC grinding machine, the simulation of helical groove machining with given wheel profile and setting condition is necessary. Considering the wheel as a collection of thin disks, the flute configuration is predicted in a cross section perpendicular to the axis and the grinding wheel profile is also predicted to machine the desired helical groove with given setting conditions. Two programs for these processes are developed. Using programs interactively, the helical groove machining process can be predicted more accurately. By clarifying the geometrical relation between the shape of cutting edge and the flute configuration in the cross section which is perpendicular to drill axis, it becomes possible to predict the necessary cross sectional shape of wheel for desired drill cutting edge shape. Some factors for the software are considered concerning prediction of accuracy and computing time.

Issues on the Machining of 3D-Profile for Automotive Press Dies (자동차 프레스 금형을 위한 3차원 윤곽가공의 문제점)

  • Lee S. H.;Chung Y. C.;Ju S. Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2002.02a
    • /
    • pp.19-25
    • /
    • 2002
  • Profile machining using cutter diameter compensation is widely used in die and mould manufacturing. Especially automotive die makers try to use 3D-profile machining for trimming or flange dies. But the technological requirements and implementation issues haven't been defined. In this paper we summarized the requirements and issues of 3D-profile machining. Approximation of input profiles into sequences of line and helical arc is the first major issue. The second major issue is removing cutter interference from the approximated curves holding z-values when the maximum cutter diameter is given. Keeping constant machining width, local machining, path linking problems and several detail technological requirements are also discussed.

  • PDF

Issues on the Machining of 3D-Profile for Automotive Press Dies (자동차 프레스 금형을 위한 3차원 윤곽가공의 문제점)

  • 이상헌;정연찬;주상윤
    • Korean Journal of Computational Design and Engineering
    • /
    • v.7 no.3
    • /
    • pp.141-147
    • /
    • 2002
  • Profile machining using cutter diameter compensation is widely used in die and mould manufacturing. Especially automotive die makers try to use 3D-profile machining for trimming or flange dies. But the technological requirements and implementation issues haven't been defined. In this paper we summarized the requirements and issues of 3D-profile machining. Approximation of input profiles into sequences of line and helical arc is the first major issue. The second major issue is removing cutter inter- ference from the approximated curves holding z-values when the maximum cutter diameter is given. Keeping constant machining width, local machining, path linking problems and several detail technological requirements are also discussed.

Drilling Characteristics Using the Helical Motion of Ball End Mill Tools (볼엔드밀 공구의 헬리컬 운동을 이용한 구멍가공 특성)

  • 김근오;박규열
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.6
    • /
    • pp.40-47
    • /
    • 1998
  • Drilling is an indispensable process in manufacturing of the die and mould and the other mechanical parts which needs high dimensional and surface accuracy. In this paper, a new type of drilling method was proposed in order to improve both processing efficiency and accuracy. Specifically, the helical motion using ball end mill tools, instead of normal drilling method, was applied to perform an effective hole machining. In this paper, an theoretical background of the new type of drilling method was established, and the feasibility of the proposed theory was proved by experiments, where proposed drilling process in the paper gave a different machining specification than general method did.

  • PDF

Manufacturing Powder Extrusion Die and Experiment for Fabrication of Miniature Helical-Gears (소형 헬리컬 기어 제조를 위한 분말 압출 금형 제작 및 실험)

  • Hwang, D.W.;Lee, K.H.;Kim, B.M.
    • Transactions of Materials Processing
    • /
    • v.19 no.5
    • /
    • pp.283-289
    • /
    • 2010
  • Extrusion process in the bulk material for fabrication of miniature helical gears has problems such as a high forming load and short tool life because the cross-section is complex and asymmetry. To overcome these problems, in this study, miniature helical gears were fabricated by Zn-22Al powder hot extrusion. The included die angle for minimum extrusion load and improving die filling was determined by FE-simulation. The Zn-22Al spheroidal powder produced by gasatomization were compacted and sintered for extrusion experiment. The dimension of helical-gear is 0.3mm in module, 3.35mm in pitch diameter, $15^{\circ}$ in helix angle and the number of teeth is 12. All of the extrusion experiments were performed with internal helical gear die which was machined by precision electric discharge machining using the electrode. The experiment was conducted at $190^{\circ}C$ to $310^{\circ}C$ to obtain extrusive and mechanical properties. The extruded helical gears were analyzed through extrusion load, Vickers hardness and SEM images for each extrusion temperature. The powder hot extrusion process was successfully applied to fabricate a miniature helical gear.

3D-Contour Machining for Die Manufacturing in a Motor Industry (자동차 산업의 금형제작을 위한 3차원 윤곽가공)

  • Ju, Sang-Yoon;Nam, Jang-Hyun
    • IE interfaces
    • /
    • v.9 no.2
    • /
    • pp.119-128
    • /
    • 1996
  • A procedure is presented for a 3D-contour machining without cutter interferences. The 3D-contouring machining along a spatial curve is often required for manufacturing trimming and flange dies in motor industries. Input data for the machining contour is a spline curve with polynomial vector equation provided by CATIA system. Points are sampled on the contour curve and line segments and helical curves are approximated from the point data. Cutter interference is checked on the approximated spline and all of interference curves are substituted with interference-free helical curves for a tool path generation. The non-machined curve areas are locally machined by tools with smaller diameters. A tool radius offset is considered for generating NC data to be free with tool size.

  • PDF

시뮤레이터를 이용한 드릴연삭용 CAM 개발

  • Pham Trung Thanh;Ko Sung-Lim
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.213-214
    • /
    • 2006
  • The CAM software for drill grinding has been developed to save time, reduce cost for tool manufacturing and obtain accuracy of tool. In this paper, the developing software for drill will be presented including calculation and simulation of machining processes using 5-axes CNC grinding machine. The algorithm fer helical flute grinding was applied into calculating NC data. The software will generate NC code for machining by using input data of tool geometry, wheel geometry, wheel setting, machine setting. These NC code files will be used in simulator as input file. The simulator provides some functions for simulating machining processes, inspecting and measuring tool geometry.

  • PDF

A Study on the Manufacturing of Screw Rotors for Air-Compressors Using RTM Process (Resin Transfer Molding을 이용한 공기 압축기용 스크류로터 제작에 관한 연구)

  • 서정도;이대길
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 1999.11a
    • /
    • pp.139-142
    • /
    • 1999
  • Screw rotors are core parts of screw type air compressors, compressors in refrigerating machines and super chargers of automobiles etc. They are composed of a female and a male rotors which have complex section profiles and helically swept geometry. Screw type compressors have advantages of low noise, high efficiency, less needs in maintenance etc. Usually, machining process of screw rotors requires long machining time using CNC machine designed only for screw rotors, which increase the cost of production. In this work, the screw rotors for air-compressors were manufactured with fiber reinforced epoxy composite materials by resin transfer molding process. The mold for the RTM process was made of aluminum and silicon rubber and was designed for release of helical shape products. Composite screw rotors, manufactured by RTM process, have advantages of lightweight, less cost of production, good characteristics of vibration etc.

  • PDF