• 제목/요약/키워드: Helical Coil

검색결과 80건 처리시간 0.03초

CO2 가스쿨러용 콤팩트열교환기 개발에 관한 연구(2) - 열유량과 압력강하에 관한 실험 및 예측 - (Experimental Study on Compact type CO2 Gas Cooler(2) - Experiments and Predictions on Heat Flowrate and Pressure Drop -)

  • 오후규;손창효
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제34권2호
    • /
    • pp.259-266
    • /
    • 2010
  • 다중관식 헬리컬 코일형 가스냉각기내 $CO_2$의 열유량과 압력강하는 LMTD 방식을 이용하여 예측하였고 그 결과를 실험값과 비교하였다. $CO_2$와 냉각수의 유량은 각각 0.06~0.075 kg/s이고, 가스냉각기의 냉각압력은 8~10 MPa이다. 초임계 $CO_2$의 냉각시의 열유량과 압력강하는 LMTD 방식을 이용하여 예측하였고, 이때 냉매측 열전달과 압력강하식은 각각 Gnielinski와 Dittus-Boelter 식을 사용하였다. LMTD법으로 예측한 값과 실험값을 비교한 결과, $CO_2$의 열유량과 압력강하는 상대적으로 좋은 일치를 보였다.

Cu-Zn-Al 형상기억합금의 코일스프링 특성 (Helical coil springs property in Cu-Zn-Al shape memory alloy)

  • 권희경;최창수;정인상
    • 열처리공학회지
    • /
    • 제9권3호
    • /
    • pp.187-197
    • /
    • 1996
  • In this study, the properties of coil spring made by Cu-Zn-Al and B added shape memory alloys are investigated. The measurement of recovery displacement and energy with increasing weight, and thermocycling properties have been studied using displacement measuring device. Transformation temperature and phase change by thermocycling have been also investigated by DSC and X-ray diffractometer. Grain size of the alloy is refined from 1.2mm to $400{\mu}m$ by 0.06wt% of B addition. The maximum recovery energy of the coil spring for B added alloy is larger than that of no B added alloy, it is because of grain refinement. And shape memory ability of the coil spring by thermocycling decrease with increasing thermocycling after thermocycle under load. The degradation of shape memory properties of coil spring by thermocycling is improved by B addition.

  • PDF

Parametric study of a new tuned mass damper with pre-strained SMA helical springs for vibration reduction

  • Hongwang Lv;Bin Huang
    • Smart Structures and Systems
    • /
    • 제31권1호
    • /
    • pp.89-100
    • /
    • 2023
  • This paper conducts a parametric study of a new tuned mass damper with pre-strained superelastic SMA helical springs (SMAS-TMD) on the vibration reduction effect. First, a force-displacement relation model of superelastic SMA helical spring is presented based on the multilinear constitutive model of SMA material, and the tension tests of the six SMA springs fabricated are implemented to validate the mechanical model. Then, a dynamic model of a single floor steel frame with the SMAS-TMD damper is set up to simulate the seismic responses of the frame, which are testified by the shaking table tests. The wire diameter, initial coil diameter, number of coils and pre-strain length of SMA springs are extracted to investigate their influences on the seismic response reduction of the frame. The numerical and experimental results show that, under different earthquakes, when the wire diameter, initial coil diameter and number of coils are set to the appropriate values so that the initial elastic stiffness of the SMA spring is between 0.37 and 0.58 times of classic TMD stiffness, the maximum reduction ratios of the proposed damper can reach 40% as the mass ratio is 2.34%. Meanwhile, when the pre-strain length of SMA spring is in a suitable range, the SMAS-TMD damper can also achieve very good vibration reduction performance. The vibration reduction performance of the SMAS-TMD damper is generally equal to or better than that of the classic optimal TMD, and the proposed damper effectively suppresses the detuning phenomena that often occurs in the classic TMD.

헬리컬 스프링의 자유진동 해석 (Free Vibration Analysis of Helical Springs)

  • 김월태;정명조;김현수;이영신
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 추계학술대회논문집
    • /
    • pp.977-983
    • /
    • 2003
  • Free vibration analysis of helical springs was performed by the use of the commercial finite element analysis program, ANSYS. The investigation of national frequency was focused on the effect of various parameters such as boundary conditions, spring indices, number of coil turns and helix angles which are considered to affect the free vibration of a spring. The finite element method was validated by comparison with the result of a previouosly published literature. The similarity of frequency trend was shown among three boundary conditions: clamped-clamped, free-free, simpliy supported-simply supported but there was no similarity in light of mode shapes among them. Several modes showed similar frequencies on and near the frequencies identified by the natural frequency formula of Wahl. Natural frequencies increased with spring indices and number of turns decreasing and with helix angles increasing. The results investigated by finiete element method were compared with the experemental result and theoretical result and showed a good agreement among them.

  • PDF

수평 회전 히트파이프에서 내부 삽입 코일이 유동 형태 및 열전달 성능에 미치는 영향에 대한 실험 연구 (An experimental study on the effects of an inserted coil on flow patterns and heat transport performances for a horizontal rotating heat pipe)

  • 이진성;김철주;김선주;문석환
    • 설비공학논문집
    • /
    • 제10권6호
    • /
    • pp.763-772
    • /
    • 1998
  • The effects of an inserted coil on flow patterns and heat transport performance for a horizontal rotating heat pipe have been studied experimentally. Especially, the present study is to see an internally inserted helical coil inside a RHP would lead to the same kind of results as internal fins. Visualization test conducted for an acryl tube, charged water with at a volumetric rate of 20%. When the flow kept pool regime at a low RPM(less than 1,000 RPM), the movement of coil forced the water to flow in axial direction. But this pumping effect of coil disappeared, when the pool regime changed to annular one which could be created by increasing RPM. The pumping effects for RHP with an inserted coil resulted enhancement both in condensation heat transfer coefficient and heat transport limitation, as obtained in case of using internal fins. But all these effects became negligible in the range of higher RPM(above 1,000∼1,200) with the transition of flow regime to annular flow.

  • PDF

An Experimental Study on the Effects of ...an Inserted Coil on Flow Patterns pd. Beat Transport Performances for a Horizontal Rotating Heat Pipe

  • Lee, Jin-Sung;Kim, Chul-Ju;Kim, Bong-Hun
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • 제8권1호
    • /
    • pp.50-61
    • /
    • 2000
  • The effects of an inserted coil on flow . patterns and heat transfer performance for a horizontal rotating heat pipe have been studied experimentally. Especially, the present study is to see an internally inserted helical coil inside a RHP would lead to the same kind of results as internal fins. Visualization test conducted for an acryl tube, charged water with at a volumetric rate of 20%. When the flow kept pool regime at a low rpm(less than 1,000rpm), the movement of coil forced the water to flow in axial direction. But this pumping effect of coil disappeared, when the pool regime changed to annular one which could be created by increasing rpm. The pumping effects for RHP with an inserted coil resulted in the enhancement in both condensation heat transfer coefficient and heat transport limitation, as obtained in case of using internal fins. But all these effects became negligible in the range of higher rpm(above 1,000-1,200) with the transition of flow regime to annular flow.

  • PDF

상부 코일히터를 갖춘 나선재킷형 태양열 축열조의 성능예측을 위한 CFD 해석모델 개발 및 검증 (Computational Fluid Dynamics Model for Solar Thermal Storage Tanks with Helical Jacket Heater and Upper Spiral Coil Heater)

  • 백승만;종일명;남진현;정재동;홍희기
    • 대한기계학회논문집B
    • /
    • 제37권4호
    • /
    • pp.331-341
    • /
    • 2013
  • 태양열 온수급탕 시스템에서는 태양열 에너지가 집열판에서 획득되고 열매체로 전달되어 최종적으로 온수의 형태로 축열조에 저장된다. 본 연구에서는 상부 코일히터를 갖춘 나선재킷형 축열조의 축열성능 특성을 정확하게 해석할 수 있는 전산유체역학 모델을 개발하였다. 본 연구에서 고려한 축열조는 벽면에 열매체의 나선유로가 형성된 맨틀형 축열조의 일종으로 시스템 설계 단순화, 저유량 운전, 성층화 촉진 등의 장점을 지닌다. 또한 축열조 내부에 추가적인 코일히터가 장착되어 축열성능과 성층화의 추가적인 향상을 도모할 수 있다. 본 연구에서 개발된 해석모델의 검증은 실제 태양열 온수급탕 시스템의 실증실험 결과와 비교를 통하여 수행되었으며, 온수의 온도변화, 열매체의 온도변화, 성층화 온도분포의 측면에서 잘 일치하는 결과를 얻었다.

나선형 냉각 코일이 설치된 교반기에서 임펠러 배치가 교반과 열전달에 미치는 영향 (THE EFFECTS OF IMPELLER CONFIGURATION ON MIXING AND HEAT TRANSFER IN A STIRRED TANK WITH A HELICAL COOLING COIL)

  • 김인선;송현섭;한상필
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2005년도 추계 학술대회논문집
    • /
    • pp.55-59
    • /
    • 2005
  • CFD analysis has been conducted to find the two stage impeller configuration which is the most suitable for a stirred tank with an internal helical cooling coil and a cooling jacket, which is frequently used in chemical industries for highly exothermic reactions ranged from low to medium viscosity. Two typical types of impellers are considered; pitched paddle impellers and Rushton turbine impellers. Interestingly, pitched paddle impellers show a good mixing performance for multi-species, whereas Rushton turbine impellers achieve a good mixing performance for multi-phases. Besides the type of an impeller, the location of an impeller is another important factor to be considered in order to accomplish an effective mixing. The best set of types and locations of two impellers is recommended based on the coefficient of variation(CoV) value and the heat removal capability obtained from CFD results. The former is a measure to quantify the degree of mixing.

  • PDF

고압 펄스 성형라인 충전을 위한 공심형 고압 펄스트랜스의 제작과 동작 특성 (Fabrication and Operation Testing of an Air-cored Pulse Transformer for Charging a High Voltage Pulse Forming Line)

  • 진윤식;김영배;김종수;류홍제;조주현;임근희;임수원
    • 전기학회논문지
    • /
    • 제59권5호
    • /
    • pp.939-944
    • /
    • 2010
  • A high voltage air-cored helical strip/wire type pulse transformer has been fabricated for charging of a high voltage pulse forming line. As a primary coil, copper strip of 25mm width was wound helically around a MC nylon cylinder. For a secondary coil, copper enameled wire of 1mm diameter was wound around conical cylinder in order to provide insulation between two windings. The coupling coefficient of 0.53 was obtained when two coils were combined coaxially in the insulation oil filled chamber. Voltage gain and energy transfer efficiency were investigated by varying the parameters of primary and secondary circuit. Test results shows that the voltage gain increases up to 17 with increasing the primary capacitance up to 200nF. And highest energy transfer efficiency of 44% was obtained when the dual resonant operation condition was nearly satisfied. The pulse transformer developed in this study can be used for charging the middle conductor of a Blumlein pulse forming line.