• 제목/요약/키워드: Height Prediction

검색결과 577건 처리시간 0.022초

인공신경망을 이용한 이면비드 예측 및 용접성 평가 (Back-bead Prediction and Weldability Estimation Using An Artificial Neural Network)

  • 이정익;고병갑
    • 한국공작기계학회논문집
    • /
    • 제16권4호
    • /
    • pp.79-86
    • /
    • 2007
  • The shape of excessive penetration mainly depends on welding conditions(welding current and welding voltage), and welding process(groove gap and welding speed). These conditions are the major affecting factors to width and height of back bead. In this paper, back-bead prediction and weldability estimation using artificial neural network were investigated. Results are as follows. 1) If groove gap, welding current, welding voltage and welding speed will be previously determined as a welding condition, width and height of back bead can be predicted by artificial neural network system without experimental measurement. 2) From the result applied to three weld quality levels(ISO 5817), both experimented measurement using vision sensor and predicted mean values by artificial neural network showed good agreement. 3) The width and height of back bead are proportional to groove gap, welding current and welding voltage, but welding speed. is not.

서남권 해상풍력단지 유지보수 활동을 위한 중기 파고 예보 개선 (Improvement of Wave Height Mid-term Forecast for Maintenance Activities in Southwest Offshore Wind Farm)

  • 김지영;이호엽;서인선;박다정;강금석
    • 풍력에너지저널
    • /
    • 제14권3호
    • /
    • pp.25-33
    • /
    • 2023
  • In order to secure the safety of increasing offshore activities such as offshore wind farm maintenance and fishing, IMPACT, a mid-term marine weather forecasting system, was established by predicting marine weather up to 7 days in advance. Forecast data from the Korea Hydrographic and Oceanographic Agency (KHOA), which provides the most reliable marine meteorological service in Korea, was used, but wind speed and wave height forecast errors increased as the leading forecast period increased, so improvement of the accuracy of the model results was needed. The Model Output Statistics (MOS) method, a post-correction method using statistical machine learning, was applied to improve the prediction accuracy of wave height, which is an important factor in forecasting the risk of marine activities. Compared with the observed data, the wave height prediction results by the model before correction for 6 to 7 days ahead showed an RMSE of 0.692 m and R of 0.591, and there was a tendency to underestimate high waves. After correction with the MOS technique, RMSE was 0.554 m and R was 0.732, confirming that accuracy was significantly improved.

부모의 신장과 TW3법에 의한 예측 신장 (AHP TW3)의 상관성 연구 (The Study on Correlationship between Parent's Height and Adult Height Prediction according to TW3 Method)

  • 강기연;한재경;김윤희
    • 대한한방소아과학회지
    • /
    • 제26권3호
    • /
    • pp.46-54
    • /
    • 2012
  • Objectives The purpose of this study is to find out the relationship between parents' heights and predicted height of the children who had been treated in the growth clinic of oriental medical hospital. Methods The study was conducted with 253 children who visited Oriental Medical Hospital from July 2010 to June 2012. They were analyzed by reviewing the children's chart and correlation analysis to find out the relationship between the two heights. Results In distribution of the sex and the age, sex were similar, but boys who came to the clinic were averagely younger than the girls. In predicting adult height by TW3 method and mean parent's height, correlation in the girls was higher than the boys, especially the girls after their first menstruation. Parents' heights were related to both the boys and the girls, but mother's height was more closely related. Predicted heights of the boys before secondary sex characteristics were correlated with the child's height, but rather correlated with parent's both heights after secondary sexual character and found to be more relevant to father's height. The girls' predicted heights before their menstruation were not correlated with father's height, but with mother's. Their heights after their first periods were correlated with parents' both heights, but more correlated with father's height. Conclusions This study helps set proper periods and goals of growth treatment based on the correlation between parents' height and predicted adult height according to TW3 method.

Study on Aboveground Biomass of Pinus sylvesris var. mongolica Plantation Forest in Northeast China Based on Prediction Equations

  • Jia, Weiwei;Li, Lu;Li, Fengri
    • Journal of Forest and Environmental Science
    • /
    • 제28권2호
    • /
    • pp.68-74
    • /
    • 2012
  • A total of 45 Pinus sylvestnis var. mongolica trees from 9 plots in northeast China were destructively sampled to develop aboveground prediction equations for inventory application. Sampling plots covered a range of stand ages (12-47-years-old) and densities (450-3,840/ha). The distribution of aboveground biomass of whole-trees and tree component (stems, branches and leaves) of individual trees were studied and 4 equations were developed as functions of diameter at breast height (DBH), total height (HT). All the equations have good estimation effect with high prediction precision over 90%. Forest biomass was estimated based on the individual biomass prediction equations. It was found forest biomass of all organs increased with the increasing of stand age and density. And the period of 45-50 years was the suitable harvest time for Pinus sylvesris plantation.

Prediction of Significant Wave Height in Korea Strait Using Machine Learning

  • Park, Sung Boo;Shin, Seong Yun;Jung, Kwang Hyo;Lee, Byung Gook
    • 한국해양공학회지
    • /
    • 제35권5호
    • /
    • pp.336-346
    • /
    • 2021
  • The prediction of wave conditions is crucial in the field of marine and ocean engineering. Hence, this study aims to predict the significant wave height through machine learning (ML), a soft computing method. The adopted metocean data, collected from 2012 to 2020, were obtained from the Korea Institute of Ocean Science and Technology. We adopted the feedforward neural network (FNN) and long-short term memory (LSTM) models to predict significant wave height. Input parameters for the input layer were selected by Pearson correlation coefficients. To obtain the optimized hyperparameter, we conducted a sensitivity study on the window size, node, layer, and activation function. Finally, the significant wave height was predicted using the FNN and LSTM models, by varying the three input parameters and three window sizes. Accordingly, FNN (W48) (i.e., FNN with window size 48) and LSTM (W48) (i.e., LSTM with window size 48) were superior outcomes. The most suitable model for predicting the significant wave height was FNN(W48) owing to its accuracy and calculation time. If the metocean data were further accumulated, the accuracy of the ML model would have improved, and it will be beneficial to predict added resistance by waves when conducting a sea trial test.

Pile tip grouting diffusion height prediction considering unloading effect based on cavity reverse expansion model

  • Jiaqi Zhang;Chunfeng Zhao;Cheng Zhao;Yue Wu;Xin Gong
    • Geomechanics and Engineering
    • /
    • 제37권2호
    • /
    • pp.97-107
    • /
    • 2024
  • The accurate prediction of grouting upward diffusion height is crucial for estimating the bearing capacity of tip-grouted piles. Borehole construction during the installation of bored piles induces soil unloading, resulting in both radial stress loss in the surrounding soil and an impact on grouting fluid diffusion. In this study, a modified model is developed for predicting grout diffusion height. This model incorporates the classical rheological equation of power-law cement grout and the cavity reverse expansion model to account for different degrees of unloading. A series of single-pile tip grouting and static load tests are conducted with varying initial grouting pressures. The test results demonstrate a significant effect of vertical grout diffusion on improving pile lateral friction resistance and bearing capacity. Increasing the grouting pressure leads to an increase in the vertical height of the grout. A comparison between the predicted values using the proposed model and the actual measured results reveals a model error ranging from -12.3% to 8.0%. Parametric analysis shows that grout diffusion height increases with an increase in the degree of unloading, with a more pronounced effect observed at higher grouting pressures. Two case studies are presented to verify the applicability of the proposed model. Field measurements of grout diffusion height correspond to unloading ratios of 0.68 and 0.71, respectively, as predicted by the model. Neglecting the unloading effect would result in a conservative estimate.

Center point prediction using Gaussian elliptic and size component regression using small solution space for object detection

  • Yuantian Xia;Shuhan Lu;Longhe Wang;Lin Li
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제17권8호
    • /
    • pp.1976-1995
    • /
    • 2023
  • The anchor-free object detector CenterNet regards the object as a center point and predicts it based on the Gaussian circle region. For each object's center point, CenterNet directly regresses the width and height of the objects and finally gets the boundary range of the objects. However, the critical range of the object's center point can not be accurately limited by using the Gaussian circle region to constrain the prediction region, resulting in many low-quality centers' predicted values. In addition, because of the large difference between the width and height of different objects, directly regressing the width and height will make the model difficult to converge and lose the intrinsic relationship between them, thereby reducing the stability and consistency of accuracy. For these problems, we proposed a center point prediction method based on the Gaussian elliptic region and a size component regression method based on the small solution space. First, we constructed a Gaussian ellipse region that can accurately predict the object's center point. Second, we recode the width and height of the objects, which significantly reduces the regression solution space and improves the convergence speed of the model. Finally, we jointly decode the predicted components, enhancing the internal relationship between the size components and improving the accuracy consistency. Experiments show that when using CenterNet as the improved baseline and Hourglass-104 as the backbone, on the MS COCO dataset, our improved model achieved 44.7%, which is 2.6% higher than the baseline.

CenterNet Based on Diagonal Half-length and Center Angle Regression for Object Detection

  • Yuantian, Xia;XuPeng Kou;Weie Jia;Shuhan Lu;Longhe Wang;Lin Li
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제17권7호
    • /
    • pp.1841-1857
    • /
    • 2023
  • CenterNet, a novel object detection algorithm without anchor based on key points, regards the object as a single center point for prediction and directly regresses the object's height and width. However, because the objects have different sizes, directly regressing their height and width will make the model difficult to converge and lose the intrinsic relationship between object's width and height, thereby reducing the stability of the model and the consistency of prediction accuracy. For this problem, we proposed an algorithm based on the regression of the diagonal half-length and the center angle, which significantly compresses the solution space of the regression components and enhances the intrinsic relationship between the decoded components. First, encode the object's width and height into the diagonal half-length and the center angle, where the center angle is the angle between the diagonal and the vertical centreline. Secondly, the predicted diagonal half-length and center angle are decoded into two length components. Finally, the position of the object bounding box can be accurately obtained by combining the corresponding center point coordinates. Experiments show that, when using CenterNet as the improved baseline and resnet50 as the Backbone, the improved model achieved 81.6% and 79.7% mAP on the VOC 2007 and 2012 test sets, respectively. When using Hourglass-104 as the Backbone, the improved model achieved 43.3% mAP on the COCO 2017 test sets. Compared with CenterNet, the improved model has a faster convergence rate and significantly improved the stability and prediction accuracy.

근접 방음벽의 음향성능평가 및 삽입손실 예측을 위한 근사식의 제안 (Acoustic Performance Evaluation of Noise Barriers Installed Adjacent to Rails and Suggestion of Approximation Formula for the Prediction of Insertion Loss)

  • 윤제원;장강석;조용성
    • 한국철도학회논문집
    • /
    • 제19권5호
    • /
    • pp.629-637
    • /
    • 2016
  • 본 논문에서는 선로와 근접하여 설치하는 근접 방음벽에 관한 음향성능평가와 근접 방음벽의 삽입손실 예측을 위해 경계요소법 대신에 비교적 용이하게 사용 가능한 근사식의 제안에 관한 연구를 수행하였다. 우선, 근접 방음벽을 축척 모형으로 제작하여 무향실에서 음향성능평가를 수행하였으며, 스피커 음원 위치에 따른 총합 삽입손실을 등고선 형태로 분석하였다. 그리고, 무향실에서 수행한 축척 모형 근접 방음벽에 대한 삽입손실 측정결과를 이용하여 다양한 형상의 근접 방음벽에 대한 삽입손실 예측을 위한 근사식을 제안하였다. 또한, 무향실에서의 측정결과 및 예측결과와의 상호 비교를 통해 예측 프로그램의 타당성을 검증하였다. 마지막으로, 열차 소음원의 주파수 특성을 고려하고 높이가 1.0m, 상부 방음판의 크기가 0.5m이며 'ㄱ'자 형상을 갖는 흡음형 근접 방음벽을 철도의 건축한계선에 설치하는 경우에 대한 삽입손실 예측 및 음향성능 평가를 수행하였으며, 삽입손실 예측을 위한 근사식을 제안하였다.

대규모 노천 석탄광산의 한계사면높이 결정과 사면파괴 예측을 위한 계측자료 해석 (Determination of Critical Slope Height for Large Open-pit Coal Mine and Analysis of Displacement for Slope failure Prediction)

  • 정용복;선우춘;이종범
    • 터널과지하공간
    • /
    • 제18권6호
    • /
    • pp.447-456
    • /
    • 2008
  • 노천광산에서 사면설계는 안정성과 경제성 측면에서 동시에 접근하여 결정해야 한다. 또한 일반 도로나 철도 연변의 사면과는 달리 대부분 지보나 보강없이 굴착해야 하기 때문에 사면각도가 가장 중요한 설계 변수이다. 본 연구에서는 인도네시아 파시르에 위치한 노천채광방식의 대규모 석탄광산 사면에 대하여 안정성 측면에서의 사면 각도 및 한계사면높이를 결정하였으며 이러한 설계가 가지고 있는 불확실성을 보완할 수 있는 계측 및 계측자료 해석을 수행하였다. 연구 결과, 사면각도(Overall Elope angle) $30^{\circ}$를 유지하는 경우 안전율 1.5를 확보하는 최대개발심도는 $353{\sim}438m$로 계산되었으나 강도정수에 대한 민감도분석결과를 고려할 때 사면높이는 300m를 초과하지 않는 것이 바람직하다. 또한 변위계측자료에 대한 역변위속도 분석 결과가 현장사면 사례와 잘 일치하여 이 방법을 통해 사면의 불안정성 및 파괴시기를 대략적으로 예측할 수 있을 것으로 판단된다.