• Title/Summary/Keyword: Height Determination

Search Result 342, Processing Time 0.03 seconds

Dependence Evaluation of the Self-Absorption Correction Factor for p-type High Purity Germanium Detector Characteristics (p-type HPGe 검출기 특성에 따른 밀도 보정인자 의존도 평가)

  • Jang, Mee;Ji, Young-Yong;Kim, Chang-Jong;Lee, Wanno;Kang, Mun Ja
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.13 no.4
    • /
    • pp.295-300
    • /
    • 2015
  • The precise determination of the activity for each radionuclide in environmental samples requires the self-absorption correction factor. In this research, we derived the self-absorption correction factor for three p-type high purity germanium detectors using the Monte Carlo code MCNPX. These detectors have different characteristics such as crystal diameter, height and size of the core. We compared the calculated full-energy peak efficiency with the experimental value using a standard sample with $1g/m^3$ density and verified the modeling. We simulated the dependency of the full-energy peak efficiency on the 0.3, 0.6, 0.9, 1.0, 1.2 and $1.5g/m^3$ samples and obtained the corresponding self-absorption correction factor. The self-absorption correction factors calculated for the three detectors differ by less than 1% over most of the energy range and sample densities considered. This indicates that the self-absorption correction factors are independent of the crystal characteristics of HPGe detector.

Determination of Bromine, Arsenic, Mercury, and Selenium in Plant by Neutron Activation Analysis (방사화분석법에 의한 식물 중의 Br, As, Hg, Se의 정량)

  • Chun, Sea-Yull
    • Korean Journal of Food Science and Technology
    • /
    • v.3 no.3
    • /
    • pp.144-149
    • /
    • 1971
  • The sensitive technique of activation analysis is well suited for this study since the elements such as As, Br, and Se in tobaccoes are expected to be high concentration. As, Br, and Hg were determined by Bethge destruction method and subsequent neutron activation analysis. $^{77m}Se$ was also by non-destruction activation analysis. The quantities of the element determined in Korean tobaccoes are given as follows in ppm: As, 0.65 ppm. Hg, 0.74 ppm. Se, 1.18 ppm. Br, 7.1 ppm. From the date given it seems that Korean tobaccoes and foreign tobaccoes contained considerably high concentration of selenium and mercury.

  • PDF

A New Look at Changma (장마의 재조명)

  • Seo, Kyong-Hwan;Son, Jun-Hyeok;Lee, June-Yi
    • Atmosphere
    • /
    • v.21 no.1
    • /
    • pp.109-121
    • /
    • 2011
  • This study revisits the definition of Changma, which is the major rainy season in Korea and corresponds to a regional component of the East Asian summer monsoon system. In spite of several decades of researches on Changma, questions still remain on many aspects of Changma that include its proper definition, determination of its onset and retreat, and relevant large-scale dynamical and thermodynamical features. Therefore, this study clarifies the definition of Changma (which is a starting point for the study of interannual and interdecadal variability) using a basic concept of air mass and front by calculating equivalent potential temperature (${\theta}_e$) that considers air temperature and humidity simultaneously. A negative peak in the meridional gradient of this quantity signifies the approximate location of Changma front. This front has previously been recognized as the boundary between the tropical North Pacific air mass and cold Okhotsk sea air mass. However, this study identifies three more important air masses affecting Changma: the tropical monsoon air mass related to the intertropical convergence zone over Southeast Asia and South China Sea, the tropical continental air mass over North China, and intermittently polar continental air mass. The variations of these five air masses lead to complicated evolution of Changma and modulate intensity, onset and withdrawal dates, and duration of Changma on the interannual time scale. Importantly, use of ${\theta}_e$, 500-hPa geopotential height and 200 hPa zonal wind fields for determining Changma onset and withdrawal dates results in a significant increase (up to~57%) in the hindcast skill compared to a previous study.

Determination of Thermal Cracking Index of Internal Restricted Mass Concrete Using a Numerical Analysis (수치분석을 통한 내부구속 매스콘크리트의 온도균열지수 결정)

  • Seo, Ki-Young;Kim, Hee-Sung;Jin, Chi-Sub
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.11 no.1
    • /
    • pp.57-67
    • /
    • 2007
  • The service life of concrete structure is to a great extent influenced by crack developed at early ages of concrete material. Especially, hydration heat is a main cause of thermal cracking at mass concrete structures. The thermal cracking of massive structure is analyzed of the thermal cracking index which was presented Concrete Standard Specifications. The thesis analyzed the thermal cracking index which considered various variable (cement type, height of casting, curing condition, concrete mixing temperature, the unit cement content) at internal restricted mass concrete. The analysis result is denoted increase and decrease rate of thermal cracking index whenever the variables change. The results is helped to understand thermal cracking every time structures is designed and constructed. And I think that it is useful economic and stable design of mass concrete structures.

Novel three-dimensional position analysis of the mandibular foramen in patients with skeletal class III mandibular prognathism

  • Kang, Sang-Hoon;Kim, Yeon-Ho;Won, Yu-Jin;Kim, Moon-Key
    • Imaging Science in Dentistry
    • /
    • v.46 no.2
    • /
    • pp.77-85
    • /
    • 2016
  • Purpose: To analyze the relative position of the mandibular foramina (MnFs) in patients diagnosed with skeletal class III malocclusion. Materials and Methods: Computed tomography (CT) images were collected from 85 patients. The vertical lengths of each anatomic point from the five horizontal planes passing through the MnF were measured at the coronoid process, sigmoid notch, condyle, and the gonion. The distance from the anterior ramus point to the posterior ramus point on the five horizontal planes was designated the anteroposterior horizontal distance of the ramus for each plane. The perpendicular distance from each anterior ramus point to each vertical plane through the MnF was designated the horizontal distance from the anterior ramus to the MnF. The horizontal and vertical positions were examined by regression analysis. Results: Regression analysis showed the heights of the coronoid process, sigmoid notch, and condyle for the five horizontal planes were significantly related to the height of the MnF, with the highest significance associated with the MnF-mandibular plane (coefficients of determination ($R^2$): 0.424, 0.597, and 0.604, respectively). The horizontal anteroposterior length of the ramus and the distance from the anterior ramus point to the MnF were significant by regression analysis. Conclusion: The relative position of the MnF was significantly related to the vertical heights of the sigmoid notch, coronoid process, and condyle as well as to the horizontal anteroposterior length of the ascending ramus. These findings should be clinically useful for patients with skeletal class III mandibular prognathism.

An Analytical Study on the Determination of the Lowest Improvement Depth of Deep Mixing Method (심층혼합공법의 최저 개량 심도 결정에 관한 해석적 연구)

  • Park, Choon-Sik;Song, Ji-Won
    • Journal of the Korean Geosynthetics Society
    • /
    • v.19 no.1
    • /
    • pp.35-44
    • /
    • 2020
  • Design techniques for the deep mixing method, one of the soft ground improvement methods, include two ways to interpret the ground as composite ground and pile ground. However, since comparative studies on these two approaches are insufficient, it is difficult to clearly define the analysis criteria in the design. In this study, two-dimensional and three-dimensional analyses have been performed with different conditions. The three conditions, the embankment height, depth of soft ground, and replacement ratio of reinforcement zones were varied and the analysis was performed on the basis of the assumption of composite ground and pile ground for each condition. As a result, the minimum depth of improvement in the two-dimensional analysis was deeper by 6.85~9.08% than in the three-dimensional analysis. The pile ground analysis showed that the depth of improvement was deeper by 12.22~14.45% than the composite ground analysis. Based on these results, it is concluded that for more accurate design, three-dimensional analysis should be performed rather than two-dimensional analysis. also, it is judged that necessary to analyze the ground as composite ground for economical design, and as the pile ground analysis for stable design.

Modelling Stem Diameter Variability in Pinus caribaea (Morelet) Plantations in South West Nigeria

  • Adesoye, Peter Oluremi
    • Journal of Forest and Environmental Science
    • /
    • v.32 no.3
    • /
    • pp.280-290
    • /
    • 2016
  • Stem diameter variability is an essential inventory result that provides useful information in forest management decisions. Little has been done to explore the modelling potentials of standard deviation (SDD) and coefficient of variation (CVD) of diameter at breast height (dbh). This study, therefore, was aimed at developing and testing models for predicting SDD and CVD in stands of Pinus caribaea Morelet (pine) in south west Nigeria. Sixty temporary sample plots of size $20m{\times}20m$, ranging between 15 and 37 years were sampled, covering the entire range of pine in south west Nigeria. The dbh (cm), total and merchantable heights (m), number of stems and age of trees were measured within each plot. Basal area ($m^2$), site index (m), relative spacing and percentile positions of dbh at $24^{th}$, $63^{rd}$, $76^{th}$ and $93^{rd}$ (i.e. $P_{24}$, $P_{63}$, $P_{76}$ and $P_{93}$) were computed from measured variables for each plot. Linear mixed model (LMM) was used to test the effects of locations (fixed) and plots (random). Six candidate models (3 for SDD and 3 for CVD), using three categories of explanatory variables (i.e. (i) only stand size measures, (ii) distribution measures, and (iii) combination of i and ii). The best model was chosen based on smaller relative standard error (RSE), prediction residual sum of squares (PRESS), corrected Akaike Information Criterion ($AIC_c$) and larger coefficient of determination ($R^2$). The results of the LMM indicated that location and plot effects were not significant. The CVD and SDD models having only measures of percentiles (i.e. $P_{24}$ and $P_{93}$) as predictors produced better predictions than others. However, CVD model produced the overall best predictions, because of the lower RSE and stability in measuring variability across different stand developments. The results demonstrate the potentials of CVD in modelling stem diameter variability in relationship with percentiles variables.

The friction effects at high strain rates of materials under dynamic compression loads (동압축 하중을 받는 재료의 고변형도율에서의 마찰영향)

  • 김문생
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.11 no.3
    • /
    • pp.454-464
    • /
    • 1987
  • The objective of this research is to analyze and evaluate the dynamic flow curve of metals under impact loading at both high strain rate (.epsilon.=1/h dh/dt > 10$\^$3/m/s/m) and large strain (.epsilon.=In h/h$\_$0/ > 1.0). A test method for dynamic compression of metal disc is described. The velocity of the striker face and the force on the anvil are measured during the impact period. From these primitive data the axial stress, strain, and strain rate of the disc are obtained. The Strain rate is determined by the striker velocity divided by the specimen height. This gives a slightly increasing strain rate over most of the deformation period. Strain rates of 100 to 10,000 per second are achieved. Attainable final strains are 150%. A discussion of several problem areas is presented. The friction on the specimen surfaces, the determination of the frictional coefficient, the influence of the specimen geometry (h$\_$0//d$\_$0/ ratio) on the friction effect, the lock-up condition for a given configuration, the friction correction factor, and the evaluation of several lubricants are given. The flow function(stress verus strain) is dependent on the material condition(e.g., prior cold work), specimen geometry, strain rate, and temperature.

Response of Tide-Well on Seiche (부진동에 대한 검조우물의 반응 특성)

  • 박광순;이동영;심재설
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.6 no.4
    • /
    • pp.452-458
    • /
    • 1994
  • The advantage of tide-well system with an intake pipe near the sea floor is that it can record not only tide but also harbour oscillation. tsunami. rapid change of tide height when a storm was causing rapid fluctuations in sea level. Consequently record of harbour oscillation may be extracted from tidal records by removing the predicted tide and then correcting for the attenuation caused by the tide-well system. The response of tide-well with intake pipe to seiche was examined by in situ measurements for Mukho tidal station. The well constant was also computed hydraulically on the basis of the structure of the tide gage system. It has been found that the response coefficient of the Mukho tidal station was 0.01. The tide records can be used for the determination of mean sea levels for surveying purposes. as the response of tide-well system can be estimated.

  • PDF

Size determination of Ecklonia cava for successful transplantation onto artificial seaweed reef

  • Kim, Young Dae;Shim, Jung Min;Park, Mi Seon;Hong, Jung-Pyo;Yoo, Hyun Il;Min, Byung Hwa;Jin, Hyung-Joo;Yarish, Charles;Kim, Jang K.
    • ALGAE
    • /
    • v.28 no.4
    • /
    • pp.365-369
    • /
    • 2013
  • The objective of this study was to determine the optimal blade size and timing to transplant seed-stock of Ecklonia cava Kjellman onto the reef structure. We used the modified artificial stepped reef structure. A total of 14 units (3.0 m length ${\times}$ 3.5 m width ${\times}$ 1.1 m height) were deployed 7-8 m deep under the water to examine the optimal blade size and timing to transplant seed-stock of E. cava onto the structures. Sporophytes of E. cava <1 cm in length were all died within 1 month of transplantation. The blades of 5-10 cm in length which were transplanted in March 2007 survived and grew well on the artificial reefs. Growth rates of 5-10 cm size class were higher than those of longer blade sporophytes (20-30 cm size class, transplanted in April) while the survival rates showed no difference between the classes of blade size. Both classes of 5-10 and 20-30 cm in length grew until July, and a reduction in size had occurred in September. These results indicate the importance of the blade size of E. cava and timing for successful transplantation of the seaweed on artificial reef structures.