• Title/Summary/Keyword: Height Determination

Search Result 346, Processing Time 0.029 seconds

Spatial Distribution of Wave Overtopping along Vertical Structure due to Obliquely Incident Waves (경사입사파에 의한 직립구조물에서 월파의 공간적 분포)

  • Kim, Young-Taek;Lee, Jong-In;Cho, Yong-Sik
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.23 no.6
    • /
    • pp.414-421
    • /
    • 2011
  • In determination of the crest height of a vertical structure against attacking of obliquely incident waves, most of existing studies have suggested to use the overtopping reduction factor due to incident angles. However, they have not considered the amplification of wave heights and the spatial distribution of wave overtopping. In this study, a spatial distribution of overtopping due to the amplification of wave heights along a vertical structure is investigated experimentally. It is recommended that the crest height can be determined by the same manner as that for normally incident waves up to 3 significant wave lengths from the one end of the structure. However, the rest part of the structure can be done by employing the overtopping reduction factor with considering the amplification of wave heights and the spatial distribution of wave overtopping.

A STUDY OF TROPOSPHERIC EFFECT ON HIGH PRECISION GPS HEIGHT DETERMINATION

  • Wang, Chuan-Sheng;Liou, Yuei-An
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.382-385
    • /
    • 2007
  • Constantly enhancing positioning accuracy by the Global Positioning System (GPS) technique is of great importance, but challenging, especially after the GPS positioning technique has been improved considerably during the past two decades. The associated main error sources have been reduced substantially, if not eliminated. Troposhpeic influence with its highly temporal and spatial variability appears to be one of the major error sources. It is hence an increased interest among GPS researchers to reduce the tropospheric influence or delay. Two techniques have been commonly implemented to correct the tropospheric impact. The first technique, known as parameter estimation, characterizes the path delay with empirical models and the parameters of interest are determined from the GPS measurements. The second strategy, termed as external correction, involves independent path delay measurements. The present study is an integration of both techniques in which the parameter estimation as well as external correction are used to correct the path delay for $110{\sim}210$ km range baselines. Twenty-four parameters have been obtained in 24 hours solution by setting the cutoff angle at 3 and 15 degrees for parameter estimation strategy. Measurements from meteorological instruments and water vapor radiometer (WVR) are applied in the GPS data processing, separately, as an external strategy of present research work. Interesting results have been found, indicating more stable repeatability in baseline when the external correction strategy is applied especially with the inclusion of WVR observations. The offset of an order of 1 cm is found in the baselines determined by the two strategies. On the other hand, parameter estimation exhibits more stable in terms of GPS height repeatability. The offset in the GPS height determined by the two strategies is on the order of few centimeters.

  • PDF

Strength Analysis of Double Bottom Structures in Stranding by Idealized Structural Unit Method (이상화(理想化) 구조요소법(構造要素法)에 의한 좌초시(坐礁時) 이중저(二重底) 구조(構造)의 손상 및 강도(强度) 해석(解析))

  • Jeom-K. Paik;Chang-Y. Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.28 no.1
    • /
    • pp.125-138
    • /
    • 1991
  • In this paper, an efficient method for the analysis of damage and strength of double bottom structure in stranding is described by using idealized structural unit method. Also a procedure for the determination of the effective double bottom height which is required in order to protect the inner-bottom plate is proposed. In the comparison between the present solution and he existing experimental and numerical results in stranding, its observed that the present method gives reasonable results requiring very shorts computiong times. The present method is then applied to the double bottom structure of 40K product oil carrier which is designed by the double skin design concept as an example. By performing the series of analysis, the influence of vertical member space, plate thickness and double bottom height on the energy absorption capacity of the double bottom structure in stranding is investigated. Also the minimum double bottom height with varying each design variable Is calculated based on the above result.

  • PDF

A Determination of Discharge Head of the Cherepnov Water Lifter with Siphon (Siphon을 이용한 Cherepnov 送水機의 揚程 決定)

  • 이관수;이경훈
    • Water for future
    • /
    • v.29 no.1
    • /
    • pp.213-220
    • /
    • 1996
  • This paper presents an experimental study on the discharge head of Cherepnov water lifter that was continuously operated with the aid of the siphon. The energy used by the Cherepnov water lifter is derived from the potential energy ofthe water itself. The lifter consists of three interconnected tanks and five pipes, one of which is open and two others are hermetically sealed. The effects of varying operating parameters such as the tank and pipe size, the ratio between head of discharge and drop height were analyzed. As a result, factors that can maximize the efficiency and increase the average delivery rate were indentified. When the ratio between head of discharge and drop height is about 0.5, the efficiency of Cherepnov water lifter is maximized. In order to design the efficient Cherepnov water lifter, the discharge head of the Cherepnov water lifter should be assigned to be twice as much as the drop height. The effect of tank size on the efficiency is less than 5%, while the effect of the pipe size is not negligible. The larger the pipe size is, the more the efficiency increases.

  • PDF

Evaluation of Effective Wall Roughness for 3D Computational Analysis of Open Channel Flow (개수로 흐름의 3차원 전산해석을 위한 유효 벽면거칠기 산정)

  • Choi, Junwoo;Baek, Un Il;Lee, Sang Mok;Yoon, Sung Bum
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.6B
    • /
    • pp.627-634
    • /
    • 2008
  • In a numerical simulation of open channel turbulent flows using RANS (Reynolds averaged Navier-Stokes) equations model equipped with VOF (Volume of Fluid) scheme, the determination of wall roughness for wall function was studied. The roughness constant, based on the law-of-the-wall for flow on rough walls, obtained by experimental works for pipe flows is employed in general wall functions. However, this constant of wall function is the function of Froude number in open channel flows. Thus, the wall roughness should be determined by taking into account the effect of Froude number. In addition, the wall roughness should be corresponding to Manning's roughness coefficient widely used for open channels. In this study, the relation between wall roughness height as an input condition and Manning's roughness coefficient was investigated, and an equation for effective wall roughness height considering the characteristics of numerical models was proposed as a function of Manning's roughness coefficient.

Atmospheric Boundary Layer Height Estimated based on 1.29 GHz Pulse Wave (1.29 GHz 펄스파로 산출한 대기경계층 고도)

  • Zi-Woo Seo;Byung-Hyuk Kwon;Kyung-Hun Lee;Geon-Myeong Lee
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.6
    • /
    • pp.1049-1056
    • /
    • 2023
  • The height of the atmospheric boundary layer indicates the peak developed when turbulence is generated by mixing heat and water vapor, and is generally determined through thermodynamic methods. Wind profilers produce atmospheric information from the scattering of signals sent into the atmosphere. A method for making the spectrum of turbulent components, turbulent kinetic energy dissipation rate, and refractive index structure coefficient was presented to determine the atmospheric boundary layer depth. Compared with the vertical distribution characteristics of potential temperature and specific humidity based on radiosonde data, the determination method of the atmospheric boundary layer height from wind profiler output was evaluated as very useful.

Equations for Estimating Volume and Height of Larix leptolepis Growing in the Central Region of Korea (중부지방(中部地方) 낙엽송림분(落葉松林分)의 재적식(材積式) 및 수고식(樹高式)에 관(關)한 연구(硏究))

  • Kim, Kap Duk;Choung, Song Hak
    • Journal of Korean Society of Forest Science
    • /
    • v.77 no.1
    • /
    • pp.23-31
    • /
    • 1988
  • A total of 320 Larix leptocepzs Trees growing in Kyonggi and Kangwon Province were examined to estimate tree volume and height with DBH and age. The criteria of selecting the "best" regression equation were based on coefficient of determination, $R^2$, adjusted standard error, I, and the ease of application. From the results obtained in this study, the method of estimating tree volume and height with DBH and age showed the following advantages ; 1. Since no measurement of tree height is needed, it saves time and labor in forest survey. 2. It has the ease of application because age is determined directly in artificial forests. 3. Volume and height can be estimated more easily and accurately with DBH and age than other methods.

  • PDF

Determination of the Minimum Size of Seedlings with Matsutake Mycelia That Can Survive in the Field for Matsutake-infected Pine Tree Production (송이 감염묘 육성을 위해 야외 조건에서도 송이균 생존이 가능한 소나무의 최소 크기 결정)

  • Ka, Kang-Hyeon;Kim, Hee-Su;Jeon, Sung-Min;Ryoo, Rhim;Jang, Yeongsun;Wang, Eun-Jin;Jeong, Yeun Sug
    • The Korean Journal of Mycology
    • /
    • v.45 no.3
    • /
    • pp.188-195
    • /
    • 2017
  • Despite the high commercial value of the pine mushroom (Tricholoma matsutake) around the world, its production still depends upon natural harvesting. In recent years, mushroom researchers in Korea and Japan have been successful in artificially cultivating T. matsutake by producing single mushroom through matsutake-infected pine seedlings. In this study, we determined the minimum seedling height required for the survival of matsutake mycelia in the infected pine seedlings in the field. The survival rate of matsutake mycelia in the matsutake-infected pine seedlings was 50% (14) in two years and 71% (10) in one year after their transplantation. The average height at time of transplantation of the matsutake-infected pine seedlings that bore surviving mycelia after transplantation was 25 cm (minimum 12 cm to maximum 40 cm). In conclusion, the matsutake mycelium of matsutake-infected pine seedlings was able to survive in field conditions if the height of the seedling at the time of T. matsutake infection was at least 12 cm. These results suggest that the height of the host plants used in conventional matsutake-infected pine seedling production should be greatly reduced to improve the matsutake cultivation. Therefore, standardization of the seedling height for artificial cultivation of pine mushrooms by the matsutake-infected pine seedling method is suggested.

A Study on the Relation between Working Time and Tree Formal Characteristics (임업(林業)에서의 순수작업시간(純粹作業時間)과 임목형상조건(林木形狀條件)과의 관계연구(關係硏究))

  • Kang, Gun-Uh
    • Journal of Korean Society of Forest Science
    • /
    • v.78 no.4
    • /
    • pp.381-395
    • /
    • 1989
  • The main purpose of this research is to provide scientific informations about standard wage and performance tariffs in forest management with special reference to working time for thinning. To identify relationships between net working time and tree characteristics, three geographically different sample plots were established at Yangsan, Bongpyung and Jinan and 460 oaks, 372 Japanese larches, 232 red pine and 240 pitch pine mere selected at each sample plots. The results of statistical analysis using multiple regression are as follows ; 1. Five independent variables of breast height diameter(DBH), mid-diameter(MD) large end diameter(LD), log-length(L), No. of branches(NOB) were stable independent of worker and tree species. 2. Comparing correlation coefficient of five independent variables, the best predictive variables, breast height diameter and No. of branches, were selected. Breast height diameter and No. of branches were identified as the most important independent variables in terms of effect on the dependent variable of the working time. 3. Comparing coefficient of determination (Rp) and residual mean square (MSEp), the best Linear regression equation for each tree species was selected as follower : $WT=a+b1{\times}NOB+b2{\times}DBF$ 4. Proportion of hang-up time to total working time in thinning were 66% in oak stand, 74%, in Japanese larch stand, 55%, in red pine stand and 52% in pitch pine stand, respectively. 5. Based on the best regression equation, a table of working time was made by strata of number of branches and breast height diameter. 6. Total working time using the best regression equation in Table 5 can be predicted in terms of felling time, limbing time, hang-up time, i.e., total working time increases by 11 to 13 seconds with every 1 centimeter increase in breast height diameter from 7 to 16 centimeter.

  • PDF

Backpack- and UAV-based Laser Scanning Application for Estimating Overstory and Understory Biomass of Forest Stands (임분 상하층의 바이오매스 조사를 위한 백팩형 라이다와 드론 라이다의 적용성 평가)

  • Heejae Lee;Seunguk Kim;Hyeyeong Choe
    • Journal of Korean Society of Forest Science
    • /
    • v.112 no.3
    • /
    • pp.363-373
    • /
    • 2023
  • Forest biomass surveys are regularly conducted to assess and manage forests as carbon sinks. LiDAR (Light Detection and Ranging), a remote sensing technology, has attracted considerable attention, as it allows for objective acquisition of forest structure information with minimal labor. In this study, we propose a method for estimating overstory and understory biomass in forest stands using backpack laser scanning (BPLS) and unmanned aerial vehicle laser scanning (UAV-LS), and assessed its accuracy. For overstory biomass, we analyzed the accuracy of BPLS and UAV-LS in estimating diameter at breast height (DBH) and tree height. For understory biomass, we developed a multiple regression model for estimating understory biomass using the best combination of vertical structure metrics extracted from the BPLS data. The results indicated that BPLS provided accurate estimations of DBH (R2 =0.92), but underestimated tree height (R2 =0.63, bias=-5.56 m), whereas UAV-LS showed strong performance in estimating tree height (R2 =0.91). For understory biomass, metrics representing the mean height of the points and the point density of the fourth layer were selected to develop the model. The cross-validation result of the understory biomass estimation model showed a coefficient of determination of 0.68. The study findings suggest that the proposed overstory and understory biomass survey methods using BPLS and UAV-LS can effectively replace traditional biomass survey methods.