• Title/Summary/Keyword: Heel Height

Search Result 148, Processing Time 0.024 seconds

The Effect of Shoe Heel Types and Gait Speeds on Knee Joint Angle in Healthy Young Women - A Preliminary Study

  • Chhoeum, Vantha;Wang, Changwon;Jang, Seungwan;Min, Se Dong;Kim, Young;Choi, Min-Hyung
    • Journal of Internet Computing and Services
    • /
    • v.21 no.6
    • /
    • pp.41-50
    • /
    • 2020
  • The consequences of wearing high heels can be different according to the heel height, gait speed, shoe design, heel base area, and shoe size. This study aimed to focus on the knee extension and flexion range of motion (ROM) during gait, which were challenged by wearing five different shoe heel types and two different self-selected gait speeds (comfortable and fast) as experimental conditions. Measurement standards of knee extension and flexion ROM were individually calibrated at the time of heel strike, mid-stance, toe-off, and stance phase based on the 2-minute video recordings of each gait condition. Seven healthy young women (20.7 ± 0.8 years) participated and they were asked to walk on a treadmill wearing the five given shoes at a self-selected comfortable speed (average of 2.4 ± 0.3 km/h) and a fast speed (average of 5.1 ± 0.2 km/h) in a random order. All of the shoes were in size 23.5 cm. Three of the given shoes were 9.0 cm in height, the other two were flat shoes and sneakers. A motion capture software (Kinovea 0.8.27) was used to measure the kinematic data; changes in the knee angles during each gait. During fast speed gait, the knee extension angles at heel strike and mid-stance were significantly decreased in all of the 3 high heels (p<0.05). The results revealed that fast gait speed causes knee flexion angle to significantly increase at toe-off in all five types of shoes. However, there was a significant difference in both the knee flexion and extension angles when the gait in stiletto heels and flat shoes were compared in fast gait condition (p<0.05). This showed that walking fast in high heels leads to abnormal knee ROM and thus can cause damages to the knee joints. The findings in this preliminary study can be a basis for future studies on the kinematic changes in the lower extremity during gait and for the analysis of causes and preventive methods for musculoskeletal injuries related to wearing high heels.

The Effects of the Height and the Quality of the Material of Popular Heel-up Insole on the Mean Plantar Foot Pressure during Walking (보행시 보급형 키 높이 인솔의 높이와 재질이 평균 족저압에 미치는 영향)

  • Lee, Joong-Sook;Kim, Doo-Hwan;Jung, Bu-Won;Han, Dong-Wook;Park, Don-Mog
    • Korean Journal of Applied Biomechanics
    • /
    • v.21 no.4
    • /
    • pp.479-486
    • /
    • 2011
  • This study determined the effects of the height and the quality of the material of popular heel-up insole on mean plantar foot pressure during walking. Seven healthy college students who are studying at S university in Busan were as participants in this study. After sufficiently explaining about the research to the subjects before the experiment, mean plantar foot pressures were examined using F-Scan Pressure Measure System 5.23 for the gait with shoes inserted insole and the data were compared among the height and the quality of material of insoles. In the result, there was a difference significantly in the mean plantar foot pressure followed the height of insoles both left and right. Especially, mean plantar foot pressure in left indicated significantly lower in 3 cm and 5 cm insoles than in 0 cm and 1 cm insoles. Also mean plantar foot pressure in right showed significantly lower in 3 cm and 5 cm insoles than in 0 cm, and indicated significantly lower in 5 cm insoles than in 1 cm and 3 cm insoles. The mean plantar foot pressure followed the quality of the material of insoles were different significantly. In left, the mean plantar foot pressure of urethane poly-acetyl insole was lower significantly than urethane poly-acetyl inserted air insole, power-gel insole and jelly insole. And the mean plantar foot pressure of urethane poly-acetyl insole was lower significantly than power-gel insole and jelly insole in right. We showed that 3 cm and 5 cm insoles in the height of insoles and Urethane poly-acetyl insole in the quality of material were suitable to reduce a fatigue which is felt in plantar foot during the walking.

Analysis of Influencing Factors for Calculation of the Coulomb Earth Pressure of Cantilever Retaining Wall with a Short Heel (뒷굽 길이가 짧은 캔틸레버 옹벽의 Coulomb 토압 산정에 대한 영향 인자 분석)

  • Yoo, Kun-Sun
    • Journal of the Korean Geotechnical Society
    • /
    • v.33 no.11
    • /
    • pp.59-72
    • /
    • 2017
  • In this study, the calculation method of the active earth pressure acting on the imaginary vertical plane at the end of the heel of the wall is proposed. For cantilever retaining wall, a change of shear zone behind the wall affects the earth pressure in the vertical plane at the end of heel of the wall depending on wall friction and angle of ground slope. It is very complicated to calculate the earth pressure by a limit equilibrium method (LEM) which considers angles of failure planes varying according to the heel length of the wall. So, the limit analysis method (LAM) is used for calculation of earth pressure in this study. Using the LAM, the earth pressures considering the actual slope angles of failure plane are calculated accurately, and then horizontal and vertical earth pressures are obtained from them respectively. This study results show that by decreasing the relative length of the heel, the slope angle of inward failure plane becomes larger than theoretical slope angle but the slope angle of outward failure plane does not change. And also the friction angle on the vertical plane at the end of the heel of the wall is between the ground slope angle and the wall friction angle, thereafter the active earth pressure decreases. Finally, the Coulomb earth pressure can be easily calculated from the relationship between friction angle (the ratio of vertical earth pressure to horizontal earth pressure) and relative length of the heel (the ratio of heel length to wall height).

The Study of Footwear Preferences and the Wearing Conditions in the Older Women (노인 여성의 신발 선호도와 착용 실태에 대한 연구)

  • Song, Chang-Ho;Lee, Jong-Dae;Kwon, Yoo-Jung;Lee, Jeon-Hyeong;Park, Jin-Hyun;Song, Hyun-Nam;Kim, Kyung
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.4 no.2
    • /
    • pp.63-71
    • /
    • 2009
  • Purpose:The purpose of this study was to investigate how much the type of footwear affects these preference and wearing conditions in older women. Methods:Two hundred eight women aged $60{\sim}87$ years were recruited from the elder's College and welfare center in Daegu. Each subject performed questionnaire surveys. Chi-square($X^{-2}$) test was used to compare the outcome for differences of age, weight, height, heel height and footwear size. SPSS 12.0 program was used in this study. Results:The type of their possessive shoes were casual shoes (24.8%), running shoes (20.1%) and dress shoes (16%) etc. The type of their short-distance outdoor shoes were casual shoes (32.1%), running shoes (31.4%) etc. The type of their long-distance outdoor shoes were platform shoes (40.3%), dress shoes (31%) etc. Conclusion:The heel height of platform shoes had no relation with demographic factors (age, weight, height), but the size of platform shoes had relation with demographic factors such as age and height except for weight(p<0.05).

  • PDF

EMG Analysis of Lower Extremity Muscles under different heel types of shoes when performing Tango Backward Walk (탱고 backward walk 동작시 신발 굽 유형에 따른 하지의 근전도 분석)

  • Jeong, Mi-Ra;Seo, Kuk-Woong;Gang, Yeong-Teag;Youm, Chang-Hong
    • Korean Journal of Applied Biomechanics
    • /
    • v.12 no.1
    • /
    • pp.31-46
    • /
    • 2002
  • The purpose of this research is to provide scientific training guides and the basis for preventing injuries in performing tango backward walk by comparing the effects the height and shape of a heel will have on leg muscles and determining the difference between skilled and unskilled dancers through EMG analysis according to different types of shoes Total eight female athletes were selected for this research. Four with six years of professional dancing experience and another four with one year of dance sports experience. Utilizing the EMG system, rectus femoris, biceps femoris, anterior tibialis, gastrocnemius were measured under different heights (0cm, 5cm, 7cm, 9cm) and shapes (flat, fine, wide) of a heel. Experiments were conducted calculating EMG peak value and muscle load ration under different types of shoes in order to analyze the EMG of leg muscles and Erector Spinae when performing tango backward walk. The result was as follows: 1. The EMG peak value of leg muscles showed significant difference under different heights of a heel in anterior tibialis(p<.001) and gastrocnemius(p.<01) in case of skilled dancers, and in biceps femoris(p.<01) in case of unskilled dancers. 2. The EMG peak value of leg muscles showed significant difference under different shapes of a heel in anterior tibialis(p<.001) and gastrocnemius(p<.001) in case of skilled dancers, and showed no significant difference in case of unskilled dancers. 3. The muscle load ration of leg muscles showed different degrees of muscle contribution between skilled and unskilled dancers. The muscle load ration was in the order of anterior tibialis, rectus femoris, biceps femoris, and gastrocnemius in case of skilled dancers and anterior tibialis, gastrocnemius, biceps femoris, and rectus femoris in case of unskilled dancers.

A Study on Pullout Stability according to Abutment Shape of True Mechanicaaly Stabilized Earth Wall Abutment (순수형 보강토교대의 교대 형상에 따른 인발 안정성 검토)

  • Shin, Keun-Sik;Han, Heui-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.3
    • /
    • pp.594-601
    • /
    • 2019
  • A true MSEW abutment is an abutment type that directly supports the load of a superstructure. Metal strips, which are in-extensile reinforcements, should be used to minimize abutment deformation. A study to derive the application conditions of a True MSEW abutment was carried out by Zevogolis(2007). As a result, the pullout factor of safety of the uppermost reinforcement was estimated to be the smallest. Therefore, the pullout factor of safety of the uppermost reinforcement is the most important design factor. Parameter analysis was conducted with the abutment length, abutment heel, and abutment height as variables. The pullout factor of safety increased with increasing abutment length and abutment heel length. This is because the contact area increases and the superstructure is dispersed as the abutment length and abutment heel length increase. The pullout factor of safety converges at an abutment length of 1.2m and an abutment heel length of 0.9m. This is because the effective length of the reinforcement is reduced due to the increase in contact area. On the other hand, the extension of the superstructure will increase if the abutment length and abutment heel length are increased excessively. In addition, earth-volume is increased if the abutment height increases excessively. This acts as an upper load on the MSE wall. Therefore, it needs to be examined carefully.

A Study on the Categorization of Korean Foot Shapes (한국인 발 형상 분류에 관한 연구)

  • Seong, Deok-Hyeon;Jeong, Ui-Seung;Jo, Yong-Ju
    • Journal of the Ergonomics Society of Korea
    • /
    • v.25 no.2
    • /
    • pp.107-118
    • /
    • 2006
  • Recently, Korean's 3-D foot data have been extensively collected through 5th national anthropometric survey known as 'Size Korea'. In this study, Korean foot shape was investigated and subsequently classified, based on the existing standard for foot shaping. This study analyzed and categorized Korean foot shapes through the following methods. Although the data used in this study were limited to those of Korean adults, major factors affecting the foot shape were deduced and then categorically grouped by the multivariate statistical analysis. For those whose age ranged from 14 to 70, major factors affecting the foot shape for the male were related to foot breadth, ankle thickness, 1st toe shape, malleolus height, heel to top of the foot length, the ratio between toe-side and heel-side and 5th toe shape. For the female, the ball of foot height was added to the above factors. From the factors extracted, the Korean foot shape was categorized into three groups for the male and four groups for the female. They were the ladder type, the inverted triangle type and the square type. For the female, the triangular type was added to the three types. These findings will serve as useful information for the footwear production industry in Korea.

A Comparative Study of Balance Performance in 6,7 years old by means of the Pediatric Clinical Test of Sensory Interaction for Balance (소아용 균형 감각검사(PCTSIB)를 이용한 6세 및 7세 아동의 균형 수행력 비교)

  • Lee Han-Suk;Kwon Hyuk-Cheol;Kim Jin-Sang
    • The Journal of Korean Physical Therapy
    • /
    • v.11 no.1
    • /
    • pp.87-93
    • /
    • 1999
  • The purpose of this study were to compare the balance performance with 44 children, who aged 6 and 7years old by means of the Pediatric Clinical Test of Sensory Interaction for Balance(PCTSIB), second is to determine whether age and gender-relatad difference were present, third is to found correlation of weight, height with duration of balance performance. All subjects were performed with different foot position that were feet-together, heel-toes. The starting position was that subject placed their hands on the hips. The results of each test were measured by stop watch. These collected data were analyzed by using oneway ANOVA, Sheffe test t-test and correlation. The results of this study were as follows ; 1. There were all significiant difference is all instances except condition 4 with heel-toes(p<0.05). The duration of balance performance of 7-year-olds group was more increased than 6-year-olds group. 2. There was statistically significiant difference in all instances by gender(p<0.05). 3. There was no correlation between weight or height duration of balance performance (p<0.05).

  • PDF

The Effects of Different Types of High Heels and Walking Velocity on Muscle Activation of the Paraspinal Muscles

  • Lee, Joong-Sook;Han, Dong-Wook
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.9 no.3
    • /
    • pp.271-278
    • /
    • 2014
  • PURPOSE: This study researched the effects of different types of high heels on the muscles surrounding the cervical spine, the thoracic spine, and the lumbar spine by analyzing muscle activation of the paraspinal muscles during walking while wearing high heels. The high heels were all of the same height: 8cm. METHODS: The 28 subjects in this experiment were females in their 20s with a foot size of 225-230mm. To measure the muscle activation of the paraspinal muscles, EMG electrodes were attached on the paraspinal muscles around C6, T7, and L5. The muscle activation during walking while wearing 8cm high wedge heels, setback heels, and french heels was measured. The measurements were performed 3 times each and the mean value of the result was used for analysis. Two kinds of velocity were used in this study. One of the velocity was 2.5 m/s. The other was 3.5 m/s. RESULTS: The muscle activation of paraspinal muscles increased significantly according to increase of walking velocity. But there was no significant difference according to the heel types. CONCLUSION: In view of the results, the height of heels and the velocity of walking are more convincing variables than the width of the heels on the muscle activation of paraspinal muscles. So wearing high heels is not recommended for those who have pain or functional problem of cervical and lumbar vertebrae.

Classification of Elderly Women's Foot Type (노년 여성의 발 유형분류)

  • Kim, Nam-Soon;Do, Wol-Hee
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.38 no.3
    • /
    • pp.305-320
    • /
    • 2014
  • This study identifies the foot shapes of elderly women by classifying foot type according to the 3D shape of the foot and 2D sole type analyzing individual characteristics. The subjects were 295 elderly women over 60 years of age who live in Gwangju. A foot scanner (K&I Technology $Nexcan^{(R)}$) was used to obtain three-dimensional shapes of feet and a flat bad scanner (HP Scanjet G2410) was used to obtain the two-dimensional shapes of soles. The anthropometric measuring items consisted of 59 items estimated on the right foot of each subject. Data were analyzed by various statistical methods such as factor analysis, ANOVA and cluster analysis using the SPSS 19.0 statistical program. To classify the side type of elderly women's feet, three-dimensional measurement data were analyzed for the 27 measurement items using factor analysis and 6 factors were extracted (inside height and side gradient, ankle thickness, toe height and midfoot size, lateral malleolus height, instep, and heel height and gradient). A cluster analysis resulted in three types: 36.5% belonged to Type 1 (high forefoot and high midfoot), 31.1% belonged to Type 2 (high forefoot and low midfoot), and 32.4% belonged to Type 3 (low forefoot and high midfoot). The distribution was relatively even. For the sole, 8 factors were extracted (ball width and medial foot protrusion, lateral foot protrusion, forefoot and hindfoot length ratio, ball gradient, heel size, toe breadth, lateral ball length, and foot length) and a cluster analysis resulted in three Types (Type H, Type D, and Type A). The largest proportion (42.7%) belonged to Type H, which is the same as the elderly men's case.