Land prices reflect not only the uses of land, but the potential uses as well(Plantinga, 2002) so land values can be applied to very effective indices for deciding regional status and growing potential. The purpose of this study is to deduce determinant factors of regional land prices. Principal determinants of regional land prices are analyzed with a hedonic technique and spatial econometric models based on 2001 statistic data of Korea except large cities. The results provide the followings. 1. The spatial effect of rural regions are very little with adjacent regions. 2. The common index of land price is population density and other determinant factors are different depending on land uses.
Two important issues in hedonic model are to specify accurate model and delineate submarkets. While the former has experienced much improvement over recent decades, the latter has received relatively little attention. However, the accuracy of estimates from hedonic model will be necessarily reduced when the analysis does not adequately address market segmentation which can capture the spatial scale of price formation process in real estate. Placing emphasis on improvement of performance in hedonic model, this paper tried to segment real estate markets in Gangnam-gu and Jungrang-gu, which correspond to most heterogeneous and homogeneous ones respectively in 25 autonomous districts of Seoul. First, we calculated variable coefficients from mixed geographically weighted regression model (mixed GWR model) as input for clustering, since the coefficient from hedonic model can be interpreted as shadow price of attributes constituting real estate. After that, we developed a spatially constrained data-driven methodology to preserve spatial contiguity by utilizing the SKATER algorithm based on a minimum spanning tree. Finally, the performance of this method was verified by applying a multi-level model. We concluded that submarket does not exist in Jungrang-gu and five submarkets centered on arterial roads would be reasonable in Gangnam-gu. Urban infrastructure such as arterial roads has not been considered an important factor for delineating submarkets until now, but it was found empirically that they play a key role in market segmentation.
In order to account for a price variation of apartment that places near a newly constructed subway station, a spatial hedonic model was developed to examine spacial characteristics that affect a purchasing price of an apartment using a White Estimator. In particular, the paper aims to examine various effects of subway 7 construction on an apartment price in Seoul Metropolitan Area. As explanatory variables, an apartment size, distance to a closest subway station, distance to the Central Business District (CBD) of Seoul, the number of years after building, and a lagged variable of the apartment purchasing price were used. The lagged variable plays a role of representing a spatial weighted average of previous prices of other apartments that locate within 3 km from the apartment. For a precise study, an entire sample was divided into two sets, southern area and southwestern area of Seoul, and two different spatial hedonic models were estimated. Not only before and after analysis, but also with and without analysis were conducted to compare with different effects of the spatial characteristics of two areas. The results show that before the construction of the subway 7, the prices of the apartments in the southern area were more sensitive to the apartment size, the distance to a closest subway station, the distance to the CBD, and the prices of the other apartments locating within 3km rather than those in the southwestern area. After the construction, on contrast, it is found that the apartment purchasing prices in the southwestern area are more sensitive than those in the southern area due to people's expectation regarding a new development around the subway station. In addition, the prices of the apartments locating closely with a transfer station are more likely to go up by increase in the apartment size, the distance to the station, and the prices of the other apartments within 3 km. Compared with the negative effects of the distance to the station on the prices in the other models, the positive effect of the distance to the transfer station might be caused by the characteristics of commercial area in which people are not likely to live.
Odor problem of livestock operation is important issue in a local community. I quantified the property price impact of 199 livestock operations for 3,355 housing sales in the U.S (Colorado). Spatial hedonic model was adopted to deal with spatial autocorrelation in housing market. Small beef and dairy operations, which are the traditional agricultural sector, seem to create a positive rural lifestyle amenity effect. However, the impact of livestock operation on rural residential sales turns to negative if the operation is over a certain size and species. Large hog and sheep operation seems to bring fatal economic loss from the local community perspective if it close to residential area. Livestock odor is one of the negative externality, the results provide the potential social cost of the livestock sector in the region. Policy makers may incorporate this social cost in the regional planning to minimize the social and maximize the development effect. Therefore, local officials and private individuals should carefully consider the location and characteristics of new residential properties and livestock operations alike.
The purpose of this paper is to visualize the housing market dynamics with ESDA (Exploratory Spatial Data Analysis) using MATLAB toolbox, in terms of the modeling housing market dynamics in the Busan Metropolitan City. The data are used the real housing price transaction records in Busan from the first quarter of 2006 to the second quarter of 2009. Hedonic house price model, which is not reflecting spatial autocorrelation, has been a powerful tool in understanding housing market dynamics in urban housing economics. This study considers spatial autocorrelation in order to improve the traditional hedonic model which is based on OLS(Ordinary Least Squares) method. The study is, also, investigated the comparison in terms of $R^2$, Sigma Square(${\sigma}^2$), Likelihood(LR) among spatial econometrics models such as SAR(Spatial Autoregressive Models), SEM(Spatial Errors Models), and SAC(General Spatial Models). The major finding of the study is that the SAR, SEM, SAC are far better than the traditional OLS model, considering the various indicators. In addition, the SEM and the SAC are superior to the SAR.
Currently, GIS has been widely used in the hedonic analyses of urban apartment housing markets in Korea. In those analyses, the apartment complexes are typically represented as the points or the polygons on the GIS maps and the location variables of the analyses are measured based on the points or the polygons. In this study, the relative performance of the point based approach and the polygon based approach in a GIS based hedonic analysis was compared using the apartment housing market data from the north eastern part of the city of Seoul and Davidson and MacKinnon Test. The results from this study indicate two things. First, two approaches can produce substantially different results in a hedonic price model estimation. Second, the polygon based approach produces a hedonic price model which explains the price variations better than the point based approach. These findings suggest that Korean researchers who are interested in improving quality of hedonic price model estimations and use GIS to measure the location variables for hedonic price models should consider using the polygon based approach with the point based approach. This is because the polygon based approach can produce the location variables with the shortest straight line distances and can explain the housing price variations well.
Variables representing neighborhood quality should be included in hedonic price models to control lfor the influences of negative or positive externalities from the quality of neighborhood on urban housing prices. This study proposes a GIS-based method to effectively measure the neighborhood quality variable when data on the neighborhood quality are aggregated by census sub area. This study also tests the superiority of the proposed neighborhood quality variable created by intensive use of GIS operations to a neighborhood variable not based on GIS operations in explaining the housing price variations by using Seoul's apartment sales data. The results from this study show that the neighborhood quality variable based on GIS-based operations shows better performance in explaining the urban housing price variations in Seoul's housing market. The implication from the results is that the potentials of GIS-based spatial operations in creating neighborhood quality variables should be well acknowledged by the researchers in the area of urban housing market study and GIS-based spatial operations should be more actively applied to generate better neighborhood quality variables for hedonic price models.
This study, as the temporal and spatial data for the real price apartment in Seoul from January 2006 to June 2013, empirically compared and analyzed the estimation result of apartment price using OLS by hedonic price model for the problem of space-time correlation, temporal autoregressive model (TAR) considering temporal effect, spatial autoregressive model (SAR) spatial effect and spatiotemporal autoregressive model (STAR) spatiotemporal effect. As a result, the adjusted R-square of STAR model was increased by 10% compared that of OLS model while the root mean squares error (RMSE) was decreased by 18%. Considering temporal and spatial effect, it is observed that the estimation of apartment price is more correct than the existing model. As the result of analyzing STAR model, the apartment price is affected as follows; area for apartment(-), years of apartment(-), dummy of low-rise(-), individual heating (-), city gas(-), dummy of reconstruction(+), stairs(+), size of complex(+). The results of other analysis method were the same. When estimating the price of real estate using STAR model, the government officials can improve policy efficiency and make reasonable investment based on the objective information by grasping trend of real estate market accurately.
Geographically weighted regression(GWR) model has been widely used to estimate spatially heterogeneous real estate prices. The GWR model, however, has some limitations of the selection of different price determinants over space and the restricted number of observations for local estimation. Alternatively, the geographically weighted LASSO(GWL) model has been recently introduced and received a growing interest. In this paper, we attempt to explore various local price determinants for the real estate by utilizing the GWL and its applicability to forecasting the real estate price. To do this, we developed the three hedonic models of OLS, GWR, and GWL focusing on the sales price of apartments in Seoul and compared those models in terms of model fit, prediction, and multicollinearity. As a result, local models appeared to be better than the global OLS on the whole, and in particular, the GWL appeared to be more explanatory and predictable than other models. Moreover, the GWL enabled to provide spatially different sets of price determinants which no multicollinearity exists. The GWL helps select the significant sets of independent variables from a high dimensional dataset, and hence will be a useful technique for large and complex spatial big data.
Journal of the Korean Association of Geographic Information Studies
/
v.9
no.3
/
pp.67-81
/
2006
The present study suggests an analytical method to overcome the spatial problems that traditional hedonic methods have. The concept of overlapping neighborhoods is introduced in order to solve the problems of global parameter estimate methods that treat the whole city by the gross. Moreover, a 3rd party program for the tight coupling of GIS and statistics is developed in order to explore hedonic methods efficiently. By using these, this study analyses the spatial variation of location variables that affect the real estate price. The results show that the influences of urban centers do not reach to the whole city, but only to the catchment areas of them. And the coefficients of location variables are different depending on the space. The tight coupling of GIS and statistics offers a powerful tool in analysing the real estate price efficiently.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.