• 제목/요약/키워드: Heavy-tailed errors

검색결과 15건 처리시간 0.017초

가우시안과 임펄스 잡음이 혼재한 이미지에 적용하기 위한 비선형 잡음제거 알고리즘의 제안 (Proposal of Nonlinear Image Denoising Algorithm for Images Corrupted with Gaussian and Impulse Noise)

  • 한희일
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 심포지엄 논문집 정보 및 제어부문
    • /
    • pp.14-16
    • /
    • 2007
  • The statistics for the Gaussian noise mixed with impulsive noise are modelled. The denoising algorithm called amplitude-limited sample average filter is derived, which is optimal in terms of minimizing mean square errors under the assumption that contaminating noise is heavy-tailed Gaussian distributed. Its performance is shown to be excellent when image is corrupted mainly with Gaussian noise. However, it shows visually grainy output as the amount of impulsive noise increases. In order to overcome such problems, it is combined with the myriad filter to propose an amplitude-limited myriad filter. Simulation shows it effectively removes both Gaussian and impulsive noise, not blurring edges severey.

  • PDF

BAYESIAN HIERARCHICAL MODEL WITH SKEWED ELLIPTICAL DISTRIBUTION

  • Chung, Youn-Shik;Dipak K. Dey;Yang, Tae-Young;Jang, Jung-Hoon
    • Journal of the Korean Statistical Society
    • /
    • 제32권4호
    • /
    • pp.425-448
    • /
    • 2003
  • Meta-analysis refers to quantitative methods for combining results from independent studies in order to draw overall conclusions. We consider hierarchical models including selection models under a skewed heavy tailed error distribution proposed originally by Chen et al. (1999) and Branco and Dey (2001). These rich classes of models combine the information of independent studies, allowing investigation of variability both between and within studies, and incorporate weight function. Here, the testing for the skewness parameter is discussed. The score test statistic for such a test can be shown to be expressed as the posterior expectations. Also, we consider the detail computational scheme under skewed normal and skewed Student-t distribution using MCMC method. Finally, we introduce one example from Johnson (1993)'s real data and apply our proposed methodology. We investigate sensitivity of our results under different skewed errors and under different prior distributions.

Regression Analysis of Longitudinal Data Based on M-estimates

  • Jung, Sin-Ho;Terry M. Therneau
    • Journal of the Korean Statistical Society
    • /
    • 제29권2호
    • /
    • pp.201-217
    • /
    • 2000
  • The method of generalized estimating equations (GEE) has become very popular for the analysis of longitudinal data. We extend this work to the use of M-estimators; the resultant regression estimates are robust to heavy tailed errors and to outliers. The proposed method does not require correct specification of the dependence structure between observation, and allows for heterogeneity of the error. However, an estimate of the dependence structure may be incorporated, and if it is correct this guarantees a higher efficiency for the regression estimators. A goodness-of-fit test for checking the adequacy of the assumed M-estimation regression model is also provided. Simulation studies are conducted to show the finite-sample performance of the new methods. The proposed methods are applied to a real-life data set.

  • PDF

Penalized rank regression estimator with the smoothly clipped absolute deviation function

  • Park, Jong-Tae;Jung, Kang-Mo
    • Communications for Statistical Applications and Methods
    • /
    • 제24권6호
    • /
    • pp.673-683
    • /
    • 2017
  • The least absolute shrinkage and selection operator (LASSO) has been a popular regression estimator with simultaneous variable selection. However, LASSO does not have the oracle property and its robust version is needed in the case of heavy-tailed errors or serious outliers. We propose a robust penalized regression estimator which provide a simultaneous variable selection and estimator. It is based on the rank regression and the non-convex penalty function, the smoothly clipped absolute deviation (SCAD) function which has the oracle property. The proposed method combines the robustness of the rank regression and the oracle property of the SCAD penalty. We develop an efficient algorithm to compute the proposed estimator that includes a SCAD estimate based on the local linear approximation and the tuning parameter of the penalty function. Our estimate can be obtained by the least absolute deviation method. We used an optimal tuning parameter based on the Bayesian information criterion and the cross validation method. Numerical simulation shows that the proposed estimator is robust and effective to analyze contaminated data.

The skew-t censored regression model: parameter estimation via an EM-type algorithm

  • Lachos, Victor H.;Bazan, Jorge L.;Castro, Luis M.;Park, Jiwon
    • Communications for Statistical Applications and Methods
    • /
    • 제29권3호
    • /
    • pp.333-351
    • /
    • 2022
  • The skew-t distribution is an attractive family of asymmetrical heavy-tailed densities that includes the normal, skew-normal and Student's-t distributions as special cases. In this work, we propose an EM-type algorithm for computing the maximum likelihood estimates for skew-t linear regression models with censored response. In contrast with previous proposals, this algorithm uses analytical expressions at the E-step, as opposed to Monte Carlo simulations. These expressions rely on formulas for the mean and variance of a truncated skew-t distribution, and can be computed using the R library MomTrunc. The standard errors, the prediction of unobserved values of the response and the log-likelihood function are obtained as a by-product. The proposed methodology is illustrated through the analyses of simulated and a real data application on Letter-Name Fluency test in Peruvian students.