• Title/Summary/Keyword: Heavy-Oil Boiler

Search Result 28, Processing Time 0.027 seconds

Performance Test of Ceramic Filter Collector for the heavy-oil boiler for Concurrent treatment Dust and Nitrogen Oxides (분진 및 질소산화물 동시처리를 위한 1톤 중유 보일러용 세라믹 필터 집진기의 성능실험)

  • Jung, Wan-Bo;Cho, Jung-Sick
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.21 no.6
    • /
    • pp.355-360
    • /
    • 2018
  • The product developed in this study is a ceramic catalyst filter for 1 ton heavy-oil boiler that can simultaneously process dust and nitrogen oxides. This has been developed for simultaneous processing of nitrogen oxides and dust at high efficiency of hot exhaust gas (approximately $300^{\circ}C$) generated after burning 1 ton heavy oil boiler. Ceramic catalytic filters for 1 tonne heavy-duty glass display are technologies that remove 90% of dust and 85% or more of nitrogen oxides. This is an improved new technology to integrate exhaust ventilation and desiccation devices into one, thereby reducing the production process and improving the economy. To this end, the performance test of the catalytic filter for heavy oil boilers was carried out, and the durability of the PLC circuit was constructed.

Combustion Characteristics of Heavy Fuel Oil-water Emulsion

  • Kim Houng-Soo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.30 no.1
    • /
    • pp.88-92
    • /
    • 2006
  • This study is intended to check the flame temperature to raise in burning grade C heavy fuel oil and emulsion fuel oil in a boiler and to measure the concentration of Dry Shoot(DS) and Soluble Organic Fraction(SOF) after collecting the Particulate Matters (PM). The flames temperature in boiler was measured by burning grade C heavy oil and oil-water emulsion (C heavy oil $70\%\;and\;30\%$ of water) Combustion characteristics of two fuels was also compared by trapping particulate matters (PM) in exhaust gas and measuring the generated quantities of DS and SOF in fuel gas.

An Evaluation on the Combustion Characteristics of Heavy Oil-Water Emulsions (중질유-물 유화연료의 연소특성 평가)

  • Lee, Yong-Il
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.12
    • /
    • pp.1722-1728
    • /
    • 2002
  • Most researches regarding emulsified fuel were in the areas of emulsifier, emulsified fuel manufacturing and emulsified fuel droplet combustion, but there were little papers published regarding emulsified fuel combustion and boiler efficiency in an industrial boiler. The main purpose of this study is to clarify whether improvements in the boiler efficiency and the reduction of pollutants such as CO, NOx, SOx and smoke exist or not when emulsified fuels are combusted in the commercial boiler. Main experimental parameters were water content in heavy oil , excess $O_2$, and boiler load. The fuels used in this experiment were 0.5 B-C, and 5 kinds of 0.5 B-C/water emulsified fuels. The combustion characteristics of heavy oil and its emulsions with water were investigated in an industrial boiler. The combustion stability was monitored and exhaust gases such as CO, NOx, SOx and smoke were measured with excess $O_2$ and combustion load. In case of emulsified fuel combustion, flame stability was poor and boiler efficiency was lowered by 1.6~5.7%, but emission levels of CO and smoke were improved.

A Study on Syngas Co-combustion Characteristics in a Heavy Oil Combustion System with Multi Burners (멀티 버너 중유 연소로에서의 합성 가스 혼합 연소 특성 연구)

  • Yang, Dong-Jin;Choi, Shin-Young;Yang, Won
    • Journal of the Korean Society of Combustion
    • /
    • v.15 no.1
    • /
    • pp.43-49
    • /
    • 2010
  • Co-combustion of syngas in an existing boiler can be one of the options for replacing conventional fossil fuel with alternative fuels such as waste and biomass. This study is aimed to investigate effects of syngas cocombustion on combustion characteristics and boiler efficiency. An experimental study was performed for a pilot-scale furnace with 4 oil burners. Tests were conducted with mixture-gas as a co-combustion fuel and heavy oil as a main fuel. The mixture-gas was composed of 15% CO, 7% $H_2$, 3% $CH_4$ and 75% $N_2$ for simulating syngas from air-blown gasification. And LHV of the mixture-gas was 890 kcal/$Nm^3$. Temperature distribution in the furnace and flue gas composition were measured for various heat replacement ratio by the mixture gas. Heat loss through the wall was also carried out through heat & mass balance calculation, in order to obtain informations related to boiler efficiency. Experimental results show that similar temperature distribution and flue gas composition can be obtained for the range of 0~20% heat replacement by syngas. NOx concentration is slightly decreased for higher heat replacement by the syngas because fuel NOx is decreased in the case. Meanwhile, heat loss is a bit decreased for higher heat replacement by the syngas, which implies that boiler efficiency can be a bit decreased when syngas co-combustion is applied to a boiler.

Combustion Characteristics of a Hot Water Boiler System Convertibly Fueled by Rice Husk and Heavy Oil - Heavy Oil Combustion Characteristics -

  • Kim, Myoung Ho;Kim, Dong Sun;Park, Seung Je
    • Journal of Biosystems Engineering
    • /
    • v.38 no.4
    • /
    • pp.306-311
    • /
    • 2013
  • Purpose: With the ever-rising energy prices, thermal energy heavily consuming facilities of the agricultural sector such as commercialized greenhouses and large-scale Rice Processing Complexes (RPCs) need to cut down their energy cost if they must run profitable businesses continually. One possible way to reduce their energy cost is to utilize combustible agricultural by-products or low-price oil instead of light oil as the fuel for their boiler systems. This study aims to analyze the heavy oil combustion characteristics of a newly developed hot water boiler system that can use both rice husk and heavy oil as its fuel convertibly. Methods: Heavy oil combustion experiments were conducted in this study employing four fuel feed rates (7.6, 8.5, 9.5, 11.4 $l/h$) at a combustion furnace vacuum pressure of 500 Pa and with four combustion furnace vacuum pressures (375, 500, 625, 750 Pa) at fuel feed rates of 9.5 and 11.4 $l/h$. Temperatures at five locations inside the combustion furnace and 20 additional locations throughout the whole hot water boiler system were measured to ascertain the combustion characteristics of the heavy oil. From the temperature measurement data, the thermal efficiency of the system was calculated. Flue gas smoke density and concentrations of air-polluting components in the flue gas were also measured by a gas analyzer. Results: As the fuel feed rate or combustion furnace vacuum pressure increased, the average temperature in the combustion furnace decreased but the thermal efficiency of the system showed no distinctive change. On the other hand, the thermal efficiency of the system was inversely proportionally to the vacuum level in the furnace. For all experimental conditions, the thermal efficiency remained in the range of 80.1-89.6%. The CO concentration in the flue gas was negligibly low. The NO and $SO_2$ concentration as well as the smoke density met the legal requirements. Conclusions: Considering the combustion temperature characteristics, thermal efficiency, and flue gas composition, the optimal combustion condition of the system seemed to be either the fuel feed rate of 9.5 $l/h$ with a combustion furnace vacuum pressure of 375 Pa or a fuel feed rate of 11.4 $l/h$ with a furnace vacuum pressure between 500 Pa and 625 Pa.

A Study on Syngas Co-Combustion Characteristics in a 0.7 MWth Water-Tube Boiler with Single Heavy Oil Burner (중유 싱글 버너 수관식 보일러에서의 합성가스 혼합연소 특성 연구)

  • Choi, Sin-Yeong;Yang, Dong-Jin;Bang, Byoung-Yeol;Yang, Won
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.21 no.5
    • /
    • pp.452-459
    • /
    • 2010
  • This study is aimed to investigate changes of combustion characteristics and heat efficiency when syngas from gasification process using low-rank fuel such as waste and/or biomass is applied partially to an industrial boiler. An experimental study on syngas co-combustion was performed in a 0.7 MW (1 ton steam/hr) water tube boiler using heavy oil as a main fuel. Three kinds of syngas were used as an alternative fuel: mixture gas of pure carbon monoxide and hydrogen, syngas of low calorific value generated from an air-blown gasification process, and syngas of high calorific value produced from an oxygen-blown gasification process. Effects of co-combustion ratio (0~20%) for each syngas on flue gas composition were investigated through syngas injection through the nozzles installed in the side wall of the boiler and measuring $O_2$, $CO_2$, CO and NOx concentrations in the flue gas. When syngas co-combustion was applied, injected syngas was observed to be burned completely and NOx concentration was decreased because nitrogen-containing-heavy oil was partially replaced by the syngas. However, heat efficiency of the boiler was observed to be decreased due to inert compounds in the syngas and the more significant decrease was found when syngas of lower calorific value was used. However, the decrease of the efficiency was under 10% of the heat replacement by syngas.

An Ultrasonic Breaking Action on the Homogeneous Effect of Marine Oil Particles (선박유류 입자의 균질효과에 미치는 초음파 분쇄작용)

  • 이진열;하만식;한원희
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.5 no.2
    • /
    • pp.67-78
    • /
    • 1999
  • Recently, a greater part of all ship use a coarse heavy fuel oil(HFO) over specific gravity(S.G) 1.00/15$^{\circ}C$ and viscosity 3,500 cSt/4$0^{\circ}C$ as the fuel oil of marine boiler or internal combustion engine from the viewpoint of economical ship' operation. The greater plan to improve a combustion methods of heavy fuel oil, such as atomization, homogeneity and emulsification, were contrived and carried out newly, and then applied 20kHz ultrasonic homogenizer to one of test methods. Also, adopted the marine oils(fuel oil and lubricating oil etc.) and sludge oil as test solutions, and its matrix structures were examined with photographs, Especially, it is important at control system of oil pollution, for the sludge oil emulsified, to be recycled as fuel oil of boiler according to 20kHz Ultrasonic homozenizer, and then fuel saving is attained effectively by making sludge oil to be burnt.

  • PDF

The Demonstration Test Result of 100% Bio Heavy Oil Combustion at the 75 MWe Oil Fired Power Plant (75 MWe급 중유 발전소 보일러에 대한 바이오중유 100% 전소 실증 연소실험 결과)

  • Baek, Sehyun;Park, Hoyoung;Kim, Young Joo;Kim, Tae Hyung;Kim, Hyunhee;Ko, Sung Ho
    • Journal of the Korean Society of Combustion
    • /
    • v.19 no.2
    • /
    • pp.28-36
    • /
    • 2014
  • Bio fuel oil combustion experiments were successfully demonstrated at the 75 MWe oil-fired power plant without major equipment retrofit and 100% bio-fuel oil combustion was possible without big problems. The experimental data error correction was conducted and numerical model-based analysis technique was applied for the evaluation of the results. Incase of bio fuel oil combustion, heat absorption of radiative heat transfer section was reduced while convection section has opposite trend. The furnace exit gas temperature tends to rise slightly. Environment emissions such as NOx and SOx concentrations showed a tendency to decrease during the bio fuel oil combustion period. On the other hand, boiler efficiency was slightly underestimated.

Study on the Suppression of Sulfur Trioxide in High Sulfur Boiler (고유황 보일러에서의 Sulfur Trioxide의 억제에 대한 연구)

  • Choi, Sung-Bu
    • Journal of the Korean Applied Science and Technology
    • /
    • v.28 no.4
    • /
    • pp.455-463
    • /
    • 2011
  • The average sulfur content of crude oil is 2.2%. Coal is about 0.3 to 4.0 percent of the sulfur gases or particles being discharged into the atmosphere through the chimney as 1 to 2% $SO_3$(Sulfur trioxide) and about 95% of the $SO_2$ is reported. $SO_3$ gas, which has many different causes of, as the combustion of sulfur containing fuel during the air due to the excess $SO_2$ gas is oxidized to $SO_3$ gas. Sulfur trioxide emitted from high sulfur heavy oil fired boiler caused white plume in stack and high temperature and cold end corrosion of facilities. So, in order to control sulfur trioxide concentration of Fuel gas in boiler, various of additives are used in other foreign. They are injected to Fuel Oil and consumed in boiler and reduce ash and the conversion rate of sulfur trioxide. In domestic, MgO compounds are used as additives but the total volume of them are made from other foreign company. In this study, MgO compounds were developed with liquid MgO compounds and field application was accomplished. The effect of newly developed chemicals and process were nearly equal to foreign products. In Consequent, the chemicals and process produced by newly developed technology can be substituted for foreign products and reduce the cost of plant operation.

A Study on Low-NOx Combustion in an Oil Burner for an Industrial Boiler (산업 보일러용 오일버너에서의 저 NOx 연소 연구)

  • Shin, Myung-Chul;Kim, Se-Won;Park, Ju-Won;Bang, Byeong-Ryeol;Yang, Won;Go, Young-Gun
    • Journal of the Korean Society of Combustion
    • /
    • v.14 no.1
    • /
    • pp.19-24
    • /
    • 2009
  • A novel low NOx oil burner of 0.7 MW (for a 1 ton steam/hr industrial boiler) was designed and tested to investigate the combustion characteristics through in-flame measurement and flue gas analysis. Flame shape was observed by CCD camera and $CH^*/{C_2}^*$ radical distribution in the flame were observed, along with measurement of flue gas composition such as NOx and CO, for various heat inputs, excess airs and pressure of the fuel spary nozzles. The flame showed the two-zone structure: fuel-rich and fuel-lean zone, which was very favorable for the low-NOx combustion, and the NOx emission for haevy oil combustion was significantly reduced to < 150 ppm at 4 % $O_2$, compared with the NOx level of a conventional heavy oil burner.

  • PDF