• 제목/요약/키워드: Heavy weight concrete

검색결과 107건 처리시간 0.023초

트럭 공차중량, 중앙분리대 피복두께 및 열화수준에 따른 중앙분리대 충돌해석모델의 민감도 분석 (Evaluation of Impact Resistance for Concrete Median Barrier Depending on Vehicle Curb Weight, Concrete Cover Depth and Level of Deterioration)

  • 이재하;이일근;정유석;김경진;김우석
    • 한국전산구조공학회논문집
    • /
    • 제30권4호
    • /
    • pp.297-306
    • /
    • 2017
  • 국내 고속도로 콘크리트 중앙분리대는 SB5-B(270kJ)의 충돌등급에 저항하도록 설계되어 있다. 그러나 최근 대형 화물차량의 충돌사고가 지속적으로 증가하는 경향을 보이고 있어 SB6(420kJ) 등급으로의 상향이 필요하다. 충돌등급 상향을 위한 새로운 중앙분리대 단면을 제시하기 위해서는 실제 충돌시험을 수행하여 기준 통과여부를 결정하며, 충돌시험 수행을 위한 적정 단면을 제시하기 위해서는 충돌해석을 통해 선정한다. 이러한 충돌해석의 정확도 향상을 위해서는 차량 모델, 콘크리트 단면 열화상태, 콘크리트 피복 두께 등 다양한 변수에 대한 정확한 변수 선정이 필요하다. 따라서 본 연구에서는 공차 중량, 단면 열화, 콘크리트 피복 두께에 대한 변수연구를 수행하여 충돌저항성능 저감을 확인하였다. 전체 중량뿐만 아닌 공차 중량에 따라 중앙분리대의 충돌저항성능에 차이가 있는 것으로 확인되었으며, 10cm 이하의 콘크리트 피복 두께에서는 충돌저항성능이 민감하게 증가 또는 감소한다. 단면 열화가 발생할 경우 중앙분리대의 충돌저항성능의 감소가 발생하여 열화정도에 따른 보수 및 보강이 이루어져야 하는 것으로 판단된다. 따라서 콘크리트 구조물과 차량의 충돌해석을 수행할 경우 트럭의 공차중량 비율, 콘크리트의 피복두께 및 열화에 대한 영향이 상세하게 고려될 필요가 있음을 확인하였다.

기포제 혼입 단열형 경량모르타르의 물리적 특성 및 압축강도 추정에 관한 기초적 연구 (Fundamental Study on Estimating Compressive Strength and Physical Characteristic of Heat insulation Lightweight Mortar With Foam Agent)

  • 민태범;우영제;이한승
    • KIEAE Journal
    • /
    • 제10권3호
    • /
    • pp.89-96
    • /
    • 2010
  • In comparison with ordinary or heavy-weight concrete, light-weight air void concrete has the good aspects in optimizing super tall structure systems for the process of design considering wind load and seismic load by lightening total dead load of buildings and reducing natural resources used. Light-weight air void concrete has excellent properties of heat and sound insulating due to its high amount porosity of air voids. So, it has been used as partition walls and the floor of Ondol which is the traditional Korean floor heating system. Under the condition of which the supply of light-weight aggregates are limited, the development of light-weight concrete using air voids is highly required in the aspects of reduced manufacturing prices and mass production. In this study, we investigated the physical properties and thermal behaviors of specimens that applied different mixing ratios of foaming agent to evaluate the possibility of use in the structural elements. We proposed the estimating equation for compressive strength of each mix having different ratio of foaming agent. We also confirmed that the density of cement matrix is decreased as the mixing amount of foaming agent increase up to 0.6% of foaming agent mixing ratio which was observed by SEM. Based on porosity and compressive strength of control mortar without foaming agent, we built the estimating equations of compressive strength for mortars with foaming agent. The upper limit of use in foaming agent is about 0.6% of the binder amount. Each air void is independent, and size of voids range from 50 to $100{\mu}m$.

Performance of bridge structures under heavy goods vehicle impact

  • Zhao, Wuchao;Qian, Jiang;Wang, Juan
    • Computers and Concrete
    • /
    • 제22권6호
    • /
    • pp.515-525
    • /
    • 2018
  • This paper presents a numerical study on the performance of reinforced concrete (RC) bridge structures subjected to heavy goods vehicle (HGV) collision. The objectives of this study are to investigate the dynamic response and failure modes of different types of bridges under impact loading as well as to give an insight into the simplified methods for modeling bridge structures. For this purpose, detailed finite-element models of HGV and bridges are established and verified against the full-scale collision experiment and a recent traffic accident. An intensive parametric study with the consideration of vehicle weight, vehicle velocity, structural type, simplified methods for modeling bridges is conducted; then the failure mode, impact force, deformation and internal force distribution of the validated bridge models are discussed. It is observed that the structural type has a significant effect on the force-transferring mechanism, failure mode and dynamic response of bridge structures, thus it should be considered in the anti-impact design of bridge structures. The impact force of HGV is mainly determined by the impact weight, impact velocity and contact interface, rather than the simplification of the superstructure. Furthermore, to reduce the modeling and computing cost, it is suggested to utilize the simplified bridge model considering the inertial effect of the superstructure to evaluate the structural impact behavior within a reasonable precision range.

도시 쓰레기 소각 비산재와 산업부산물을 이용한 비소성 인공골재의 제조 (Manufacture of the Non-Sintered Aggregate Using the Industrial By-products and the Municipal Waste Incineration Fly-Ash)

  • 김대규;윤성진;문경주;소양섭
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2002년도 가을 학술발표회 논문집
    • /
    • pp.69-74
    • /
    • 2002
  • Incineration method of municipal solid waste is the general method for reduction it's quantity and weight. Municipal solid waste incineration ash is classified two general types of ash : fly ash((MWFA) and bottom ash(MWBA)). MWFA containing a high degree heavy-metal may give rise to a serious environmental trouble. Therefore, this study was carried out to examine utilization of fly ash. In this study, we tried to find the recycling method of fly ash as a environmental-friendly artificial aggregate. The artificial aggregate using fly ash was tested for the various aspects, including physical properties and environmental stability. The qualities of artificial aggregate are similar to it of lightweight aggregate, and the heavy metal leaching concentration are very lower than a limitation of KSLT and EP.

  • PDF

Development of Ultra-Lightweight High Strength Trench Using Lightweight Polymer Concrete

  • Sung, Chan-Yong;Kim, Young-Ik
    • 한국농공학회지
    • /
    • 제45권7호
    • /
    • pp.20-26
    • /
    • 2003
  • The ultra-lightweight high strength polymer concrete could be used for the drain structures under severe condition. In this study, materials used were unsaturated polyester resin, heavy calcium carbonate, artificial lightweight coarse aggregate and perlite. In the test results, the unit weight of the ultra-lightweight high strength polymer concrete was 946 kg f/$\textrm{m}^3$ and the compressive strength was appeared in 34.5 MPa. The compressive strength, splitting tensile strength, flexural strength, acid resistance and weather resistance were shown in excellently than that of the normal cement concrete. The draining trench had 1m length, 0.24 m width, 0.02 m thickness and 0.07 m height. The developed trench could be effectively used at the draining structures.

원형중공 콘크리트 교각의 내진성능에 대한 실험적 연구 (Experimental Research for Seismic Performance of Circular Hollow R.C. Bridge Pier)

  • 한기훈;이강균;정영수
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1999년도 봄 학술발표회 논문집(I)
    • /
    • pp.671-676
    • /
    • 1999
  • Because of relatively heavy dead weight of concrete itself and unavoidable heat of massive concrete in bridge piers, circular hollow columns are widely used in Korean highway bridges. Since the occurrence of 1995 Kobe earthquake, there have been much concerns about seismic design for various infrastructures, inclusive of bridge structures. It is, however, understood that there are not much research works for nonlinear behavior of circular hollow columns subjected to earthquake motions. The ultimate of this experimental research is investigate nonlinear behavior of circular hollow reinforced concrete bridge piers under the quasi-static cyclic load, and then to enhance their ductility by strengthening the plastic hinge region with glassfiber sheets. It is concluded from quasi-static tests for 7 bridge piers that energy dissipation capacity and curvatures for a given displacement ductility factor $\{\mu}=frac{\Delta}{\Delta_y}$are about 20% higher for the seismically designed columns and about 70% higher for the retrofitted piers than the nonseismically designed columns in a conventional way.

  • PDF

완충재의 동특성에 따른 중량충격음 증폭에 관한 해석적 연구 (The Effect of Dynamic Property of Absorbing Sheet on the Amplification of Heavy Weight Floor Impact Noise)

  • 황재승;문대호;박홍근;홍성걸;홍건호
    • 한국소음진동공학회논문집
    • /
    • 제20권7호
    • /
    • pp.651-657
    • /
    • 2010
  • Previous experimental results performed by many researchers for a couple of decades in South Korea have shown that an absorbing sheet inserted in a conventional floating slab system for thermal insulation or vibration absorption may amplify the vibration of the slab system at specific frequency ranges depending on the material properties of the sheet. The amplified vibration, consequently, results in the heavy weight floor impact noise exceeding the sound level limit for an apartment house, 50 dB. In this study, the amplification mechanism is examined through numerical analysis and a new slab system is proposed to reduce the amplification and control the noise. The new slab system consists of studs connecting the base slab and upper concrete finishing yielding the dramatically increased stiffness of the slab. The numerical simulation is performed to investigate the effect of the slab system with studs on the vibration and noise control. The results show that the performance of the slab is sensitive to the number and location of studs, and the heavy weight floor impact noise can be reduced up to 6~7 dB compared to the conventional slab system at the optimal stud location.

표준실험동에서의 소음.진동 특성 (Noise and Vibration Characteristics of Floor Impact in a Test Building)

  • 정영;유승엽;이평직;정정호;전진용
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 춘계학술대회논문집
    • /
    • pp.92-95
    • /
    • 2005
  • In this study, Heavy-weight floor impact sound and vibration in concrete structures with different slab thickness have been measured in a test building. It was found that natural frequency increased according to increases of slab thickness, and acceleration level decreases. Results also show that the measurements in the 210 and 240mm slab structures are complied with the result from finite element analysis but the In and 180mm slab structures are not because the structures are constrained to the ground. Therefore, in modelling process the condition of sub-structures should be examined in relation to the boundary conditions.

  • PDF

바닥충격음의 평가등급 설정에 관한 연구 (A Study on the Rate Classification of Floor Impact Noise)

  • 류종관;전진용
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 추계학술대회논문집
    • /
    • pp.486-491
    • /
    • 2002
  • Auditory experiments based on subjective responses were undertaken for the standard heavy and light weight impact noise. Relations between noise levels and subjective evaluations were also investigated. As a result, it was shown that the noise class was rated with the range of sensible satisfaction by investigating the various social responses for the floor impact noise. The rate classification for the heavy weight impact noise is suggested as a design guide for concrete slabs which satisfy the residents' requirements in various sound insulation capacities of multistory residential buildings.

  • PDF

임팩트 볼을 활용한 바닥충격음 측정 및 평가 (Floor Impact Noise Measurement and Evaluation Method Using Impact Ball)

  • 전진용;정정호
    • 한국소음진동공학회논문집
    • /
    • 제15권10호
    • /
    • pp.1160-1168
    • /
    • 2005
  • Floor impact noise isolation performance of reinforced concrete floors was investigated through new measurement method using impact bail. Strong impact force in Bow frequency band below 63 Hz of bang machine is not similar to human impact source and causes some problem in evaluating heavy-weight Impact noise but heavy-weight impact noise measurement and evaluation using impact ball which is very similar to human impact is more reliable than bang machine. Correction value on the background noise and sensitivity of residents should be considered on the floor impact noise evaluation classes.