• Title/Summary/Keyword: Heavy weight concrete

Search Result 107, Processing Time 0.03 seconds

Theoretical Evaluation of the Post Tensioning Effect in Continuous Slabs (연속 슬래브의 포스트 텐셔닝 보강에 대한 이론적 분석)

  • Kim, Chang-Hyuk;Kim, Kang-Su;Kim, Sang-Sik
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.1
    • /
    • pp.105-116
    • /
    • 2009
  • Reinforced concrete (RC) structures have been most widely used because of their good economic efficiency. However, it is very weak in tensile stresses and difficult to control deflection due to the heavy self-weight of concrete. On the other hand, it is generally known that prestressed concrete structures can be the most effective to overcome the demerits of RC structures by using various tendon lay-out and its amount. In the prestressed concrete members, the inflection points of tendons should be placed effectively for the deflection control and the moment reduction. Therefore, in this study, the equations of tendon profiles are derived in terms of polynomials that satisfy essential conditions of tendon geometries such as inflection points and natural curved shapes of tendons placed in continuous members, from which vertical components of prestressing forces can be also calculated. The derived high order polynomial expression for the distributed shape of the upward and downward forces was transformed to an simplified equivalent uniform vertical force in order to improve the applicability in the calculation of member deflection. The influences of vertical forces by tendons to deflection and moment in a continuous slab were also considered depending on the distance from column face to the location of tendons. The applicability of the proposed method was examined by an example of deflection calculation for the cases of slabs with and without tendons, and the efficiency of deflection control by tendons was also quantitatively estimated.

A Study on Use and improvement of Construction type infiltration gallery (조립식 집수암거의 개량과 이용에 관한 연구)

  • 함준호
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.14 no.2
    • /
    • pp.2593-2602
    • /
    • 1972
  • Plastic pipes Wrapped with synthetic filter are recently used for drainage or Collecting of Underground water. But it's use is possible only for small size of diameter less than 300mm, because large size plastic pipes are not readily availabe. For large diameter infiltration gallery, porous concrete pipes are now used, but it's heavy weight brings difficulties in making, moving and setting of the pipes. With it's conventional method of filter setting, fine sands are brought into the pipes to make trouble to lifting pumps and channels Therefore, initial construction cost and maintenance cost become high. To solve-this problem, new method is developed and tested. Small PVC pipes(diameter 14mm) are assembled at the site of construction to newly devised I beam type circls. The size of circular inpiltration gallery is optionally determined by I beam type circle which support small PVC pipes and is made of PVC amterial. This gallery are wrappd with syntheitc filter to prevent sand instruction. In this test, the diameter of 300, 400, 500mm were used. I beam type circles were made with PVC plated with thickness. t=6, 9, 12mm. Water quantity collected through the PVC circulor gallery are measured and the strengths of the gallery. 1. Allowable setting depth of gallery pipe below graund for the case of t=6mm, D=500mm is 2.72m. 2. Collected water quantity depends on soil texture, depth of water grandient of water surface, filter material angle of setting etc. 3. About 126% of water quantity collected from the one gallery pipe measured in two gallery pipes of two parallel installation.

  • PDF

Model Test on the Effect of Bearing Capacity for In-situ Top Base Method in sand (현장타설 팽이말뚝기초공법의 지지력 증대효과에 관한 모형실험 연구)

  • Kang, Hong-Kyu;Kim, Chan-Kuk;Lee, Bong-Yul;Kim, Hak-Moon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.597-602
    • /
    • 2005
  • The present precast top-base method create many problems of requiring it plant facilities, transportation and installation, due to the heavy weight of and it takes too long time to set it up on site. In order to improve and solve these problems, in-situ Top-Base method is developed. It include processes that install Top-Base mold made of poly-ethylene into ground, then pouring concrete into the mold, and fill the rest gaps with broken stones. Considerable advantages can be obtained by applying in-situ Top-Base method in aspects of the stability, economical and construction efficiency. In this research, model tests for in-situ Top-Base system are carried out in other to the investigate the load delivering mechanism and the effect of bearing capacity.

  • PDF

Compatible Anchors of Silt Protector in Shallow Sea with Mud Seafloor Material (천해역 점성토 지반에 적합한 오탁방지막 기초 앵커)

  • KWEON GI-CHUL;HONG NAM-SEEG;SONG Mu-HYO;CHOI CHANG-GYU
    • Journal of Ocean Engineering and Technology
    • /
    • v.17 no.3 s.52
    • /
    • pp.7-12
    • /
    • 2003
  • The Navy has tested the holding capacity of many kinds of anchors in order to propose the design chart for the holding capacity of drag-embedment anchors. The design chart is only applicable up to the cable bottom angle 60 when load is raised to the ultimate weight. However, the anchor experiences a significant uplift force when the angle is above 60 in shallow seas. In this paper, the procedure for the estimation of the holding capacity of anchors in mud is proposed. Drag-embedment anchors do not function well when there is a significant uplift component of load in soft seafloor materials, such as mud. Under these loading and seafloor conditions, gravity anchors seems to be more efficient. However, they are too heavy for their holding capacity. Therefore, suction pile (hollow concrete block) is more beneficial to the foundntion of silt protector in shallow sea with mud seafloor materials.

Manufacturing artificial lightweight aggregates using coal bottom ash and its application to the lightweight-concretes (석탄 바닥재를 이용한 인공경량골재의 제조 및 경량 콘크리트에 적용)

  • Kim, Kang-Duk;Kang, Seung-Gu
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.18 no.5
    • /
    • pp.211-216
    • /
    • 2008
  • The artificial lightweight aggregate (ALA) was manufactured in a rotary kiln at $1125^{\circ}C$ using green body formed by pelletizing the batch powder composing of coal bottom ash (CBA) produced from power plant, clay and dredged soil (DS). The TCLP (Toxicity characteristic leaching procedure) results showed that the dissolution concentration of heavy metal ions of ALA fabricated in this study was below the limitation defined by the enforcement regulations of wastes management law in Korea. The ALA containing 60$\sim$70 wt% CBA had a bulk density of 1.45$\sim$1.49 and a water absorption of 17.2$\sim$18.5 %. The impact values for oven-dry state and saturated-surface dry state of ALA were 27.4$\pm$1.3 and 23.4$\pm$2.6 % respectively. The 28-days compressive strength of concrete made with various ALA was $22.7\sim27.8 N/mm^2$. The slump of concrete with ALA containing CBA 60 and 70 wt% were 7.9 and 14.3 cm respectively. The unit weight of concrete made with any ALA fabricated in this study was satisfied with the standard specifications of lightweight concrete for the civil engineering and construction presented by Korea as below $1.84 ton/m^3$.

A Study on the Applicability of Partial Post-Tension Slab with Top Anchorage System (상향긴장식 부분PT를 사용한 슬래브의 적용성 분석)

  • Lee, Deuck-Hang;Kim, Kang-Su;Kim, Chang-Hyuk;Kim, Sang-Sik;Kim, Yong-Nam;Chung, Kwang-Ryang
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.309-312
    • /
    • 2008
  • Reinforced concrete (RC) structures have been most widely used because of the economic efficiency. However, it is very weak to tensile stresses and difficult to control deflection due to the heavy self-weight of concrete. Although it is generally known that prestressed concrete structures can be the most effective to overcome the demerit of RC structures, its application is very seldom in domestic construction for the difficult onsite circumstances. The post-tension method, which is well fit for buildings that are mostly indeterminate structures and beneficial for monolithic construction, has been introduced to just a few building construction. The application of full PT method into entire spans makes construction engineers feel very difficult due to the lack of current condition in construction fields. Therefore, this study proposed the partially applied PT method as an alternative, which can improve the deflection control of RC structures and reduce the construction difficulty by applying the PT method in a part of span length as needed, and analyzed its characteristics of structural behavior. In this study, the top anchorage was applied to improve the applicability of partial PT method, and the analysis results of slab behavior were compared to the measured values obtained from the post-tensioned slab constructed by the partial PT method.

  • PDF

Electron Accelerator Shielding Design of KIPT Neutron Source Facility

  • Zhong, Zhaopeng;Gohar, Yousry
    • Nuclear Engineering and Technology
    • /
    • v.48 no.3
    • /
    • pp.785-794
    • /
    • 2016
  • The Argonne National Laboratory of the United States and the Kharkov Institute of Physics and Technology of the Ukraine have been collaborating on the design, development and construction of a neutron source facility at Kharkov Institute of Physics and Technology utilizing an electron-accelerator-driven subcritical assembly. The electron beam power is 100 kW using 100-MeV electrons. The facility was designed to perform basic and applied nuclear research, produce medical isotopes, and train nuclear specialists. The biological shield of the accelerator building was designed to reduce the biological dose to less than 5.0e-03 mSv/h during operation. The main source of the biological dose for the accelerator building is the photons and neutrons generated from different interactions of leaked electrons from the electron gun and the accelerator sections with the surrounding components and materials. The Monte Carlo N-particle extended code (MCNPX) was used for the shielding calculations because of its capability to perform electron-, photon-, and neutron-coupled transport simulations. The photon dose was tallied using the MCNPX calculation, starting with the leaked electrons. However, it is difficult to accurately tally the neutron dose directly from the leaked electrons. The neutron yield per electron from the interactions with the surrounding components is very small, ~0.01 neutron for 100-MeV electron and even smaller for lower-energy electrons. This causes difficulties for the Monte Carlo analyses and consumes tremendous computation resources for tallying the neutron dose outside the shield boundary with an acceptable accuracy. To avoid these difficulties, the SOURCE and TALLYX user subroutines of MCNPX were utilized for this study. The generated neutrons were banked, together with all related parameters, for a subsequent MCNPX calculation to obtain the neutron dose. The weight windows variance reduction technique was also utilized for both neutron and photon dose calculations. Two shielding materials, heavy concrete and ordinary concrete, were considered for the shield design. The main goal is to maintain the total dose outside the shield boundary less than 5.0e-03 mSv/h during operation. The shield configuration and parameters of the accelerator building were determined and are presented in this paper.

Seismic behavior of coupled wall structure with innovative quickly replaceable coupling beams

  • Li, Yong;Yu, Haifeng;Liang, Xiaoyong;Yu, Jianjun;Li, Pengcheng;Wang, Wei;Wang, Qizhi
    • Steel and Composite Structures
    • /
    • v.45 no.2
    • /
    • pp.293-303
    • /
    • 2022
  • In order to improve the seismic resilience of coupled wall structure, coupling beam with fuse has been developed to reduce the post-earthquake damage. However, the fuses often have a build-up I-shaped section and are relatively heavy to be replaced. Moreover, the fuse and the beam segments are usually connected by bolts and it is time-consuming to replace the damaged fuse. For reducing the repair time and cost, a novel quickly replaceable coupling beam with buckling-restrained energy dissipaters is developed. The fuse of the proposed coupling beam consists of two chord members and bar-typed energy dissipaters placed at the corners of the fuse. In this way, the weight of the energy dissipater can be greatly reduced. The energy dissipaters and the chords are connected with hinge and it is convenient to take down the damaged energy dissipater. The influence of ratio of the length of coupling beam to the length of fuse on the seismic performance of the structure is also studied. The seismic performance of the coupled wall system with the proposed coupling beam is compared with the system with reinforced concrete coupling beams. Results indicated that the weight and post-earthquake repair cost of the proposed fuse can be reduced compared with the typical I-shaped fuse. With the increase of the ratio of the beam length to the fuse length, the interstory drift of the structure is reduced while the residual fuse chord rotation is increased.

Quasi-Static Test for Seismic Performance of Circular Hollow RC Bridge Pier (원형 중공 콘크리트 교각의 내진성능에 대한 준정적 실험)

  • 정영수;한기훈;이강균;이대형
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.3 no.2
    • /
    • pp.41-54
    • /
    • 1999
  • Because of relatively heavy dead weight of concrete itself and unavoidable heat of massive concrete in bridge piers, circular hollow columns are widely used in Korean highway bridges. Since the occurrence of 1995 Kobe earthquake, there have been much concerns about seismic design for various infrastructures, inclusive of bridge structures. It is, however, understood that there are not much research works for nonlinear behavior of circular hollow columns subjected to eqrthquake motions. The objective of this experimental research is to investigate nonlinear behavior of circular hollow reinforced concrete bridge piers under the quasi-static cyclic load, and then to enhance their ductility by strengthening the plastic hinge region with glassfiber sheets. Particularly for this test, constant 10 cyclic loads have been repeatedly actuated to investigate the magnitude of strength degradation for the displacement ductility factor. Important test parameters are seismic design, confinement steel ratio, axial force and load pattern. It is observed from quasi-static tests for 7 bridge piers that the seismically designed columns and the retrofitted columns show better performance than the nonseismically designed colums, i.e. about 20% higher for energy dissipation capacity and about 70% higher for curvatures.

  • PDF

Effect of Pretreatment of Mine Tailings on the Performance of Controlled Low Strength Materials (저강도 고유동 충전재의 성능에 미치는 광미 전처리의 영향)

  • Tafesse, Million;Kim, Hyeong-Ki
    • Resources Recycling
    • /
    • v.26 no.3
    • /
    • pp.32-38
    • /
    • 2017
  • For the massive recycling of mine tailings, which are an inorganic by-product of mining process, in the field of civil engineering, pretreatments to extract heavy metals are required. This study focuses on the use of pre-treated tailings as substitute fillers for controlled low-strength material (CLSM). As a comparative study, untreated tailing, microwave-treated tailing and magnetic separated with microwaved tailing were used in this study. Cement contents amounting to 10%, 20% and 30% by the weight of the tailings were designed. Both compressive strength and flowability for all types of mixture were satisfied with the requirements of the American Concrete Institute (ACI) Committee 229, i.e., 0.3-8.3 MPa of compressive strength and longer than 200 mm flowability. Furthermore, all mixtures showed settlements less than 1% by volume of the mix.