• Title/Summary/Keyword: Heavy mineral oil

Search Result 19, Processing Time 0.019 seconds

Effects of Organic Amendments on Heavy Mineral Oil Biodegradation (중질유 오염토양의 생물학적 처리에 있어 amendments의 효과)

  • Lee, Sang-Hwan;Kim, Eul-Young;Choi, Ho-Jin
    • Journal of Soil and Groundwater Environment
    • /
    • v.12 no.5
    • /
    • pp.54-63
    • /
    • 2007
  • To examine the effects of amendments on heavy mineral oil degradation, a pilot scale experiment was conducted for over 105days. During the experiment, soil samples were collected and analyzed periodically for the determination of residual hydrocarbon and microbial activities. At the end of the experiment, the initial level of contamination ($6,205{\pm}173mgkg^{-1}$) was reduced by $33{\sim}45%$ in the amendment amended soil; whereas only 8% of the hydrocarbon was eliminated in the non-amended soil. Heavy mineral oil degradation was much faster and more complete in compost amended soils. Enhanced dissipation of heavy mineral oil in compost amended soil might be derived from increased microbial activities (respiration, microbial biomass-C) and soil enzyme activity(lipase, dehydrogenase, and FDA hydrolase) were strongly correlated with heavy mineral oil biodegradaton (P < 0.01).

The SIMDIST (Simulated Distillation) Analysis of Distributing Engine Oil (국내 유통 엔진오일 고온모사증류시험 분석)

  • Lim, Young-Kwan;Kim, Jiyeon;Kim, Jong-Ryeol;Ha, Jong-Han
    • Applied Chemistry for Engineering
    • /
    • v.28 no.6
    • /
    • pp.632-637
    • /
    • 2017
  • The vehicle lubricant occupies upto 35% in a total lubricant market and engine oil occupies upto 77% in the vehicle lubricant market in Korea. A suitable quality management of the circulating engine oil is necessary for driver and engine protection. But, KS and synthetic engine oil products (involved over 30% synthetic oil) are exempt to any quality management under Petroleum and Alternative Fuel Business Act. It is also known that synthetic oils such as PAO (poly alpha olefin) have excellent properties and performance like anti-wear, varnish control and oxidation stability than those of mineral oils. For this reason, PAO has been used for an engine oil, rotary screw and reciprocating compressor in addition to heavy duty and other extreme service applications. In this study, our research group analyzed the chromatogram pattern for the mineral oil, PAO and mineral oil involved a typical ratio of PAO using SIMDIST (simulated distillation). In the SIMDIST chromatogram, the mineral oil showed a broad peak, while PAO showed a sharp typical peak. Also the oil with a large viscosity grade exhibited a long retention time due to the heavy molecular weight and high boiling point. In particular, the blended mineral oil with 20% PAO sample showed a distinctly different pattern compared to that of using the conventional mineral oil. For monitoring PAO contents in distributing engine oils, we analyzed the SIMDIST for 27 kinds of engine oils which were popularly sold in Korea. The analytic results indicate that all kinds of engine oils showed that PAO contents were below 20% in engine oil products. Moreover, the PAO titled product was found to have a small amount of PAO. Thus, we conclude that the related laws for the proper quality management of synthetic oils are needed to be established.

Study for Synthetic Oil Performance Test Comparing with Mineral Gear oil in an Agitator Gear Box:Power consumption, Temperature, Oil & parts life for the Heavy load gear box in the Phosphoric Acid Plant (뉴스초점 - 광유와 합성유의 에너지 소비량, 온도변화 등의 성능시험 비교 고찰)

  • Lee, Jae Keun
    • Journal of the Korean Professional Engineers Association
    • /
    • v.45 no.6
    • /
    • pp.28-32
    • /
    • 2012
  • Namhae chemical is one of the largest fertilizer manufacturing company in Korea which company has operating 4 unit agitator gear boxes and producing variety kinds of fertilizer production. The gearbox operating temperature of agitator is approximated in $55^{\circ}C{\sim}90^{\circ}C$ and required to keep operating continuous without stopping. The system required high performance oil and longer oil drain interval as limited workforce in maintenance team. It was lubricated by mineral gear oil of ISO VG 320 and also need to change to new oil frequently. Namhae Chemical would expect to keep stable operating condition without shut down and consider, lower cost of operation and equipment protection.

  • PDF

Study on vehicle application of biodegradable hydraulic oils from the point of tribological evaluation technology (Tribology 관점에서 생분해성 유압작동유 실적용 평가에 관한 연구)

  • Na ByungChul;Kim JinYong;Seo JoonHo
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.367-371
    • /
    • 2004
  • Bio-degradable hydraulic oil using polyolester base oil is formulated for the applications of heavy duty hydraulic machineries. It has proved quality and market price competitiveness by assessment of reliability test in vehicle manufacturer and specific vehicle related institute. Contribution of bio-degradable oil keep the working environment clean and increase export competitiveness in European market. Leakage or waste of mineral types of hydraulic oils in heavy duty machineries causes pollution of river, ocean, underground water. Drinkable-water pollution is serious problem in Europe. In some European countries, using bio-degradable hydraulic oils become an obligation in heavy duty machineries. New product of bio-degradable oils satisfy the European regulations(OECD 302B) and shows excellent performance in compare with European products.

  • PDF

Thermal Analysis of Vegetable Insulation Oil for Hermetically Sealed Wind Turbine Transformer (풍력발전기용 밀폐형 변압기의 식물성 절연유에 대한 열적특성 연구)

  • Lee, Sung-Won;Lee, Joon-Yeob;Kim, Jun-Su;Woo, Jae-Hi;Kim, Dong-Hae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.1
    • /
    • pp.97-102
    • /
    • 2012
  • A hermetically sealed oil transformer is designed by applying expanding function of the tank due to the volume changes of the insulation oil according to the temperature rises. When the insulation oil expands, an increase in the volume of the corrugated fin prevents a pressure rise of the transformer. For a wind turbine transformer, a vegetable-oil-immersed transformer has the advantages of excellent biodegradation and fire-resistant properties like an exceptionally high fire point. When vegetable oil is substituted for mineral oil, however, the maximum winding temperature rises because of the decrease in the internal circulation flow rate resulting from the variations of the oil's physical characteristics, such as density and viscosity. The purpose of this study is to develop a hermetically sealed vegetable oil transformer that can be applied in a wind turbine and to analyze the thermal stability of the active part of the transformer to deal with pressure variations due to the temperature changes. In addition, thermal tests for the vegetable oil transformer have been performed, and the measured values are compared with the analysis results.

A Study on Catalytic Pyrolysis of Polypropylene with Mn/sand (Mn/sand 촉매를 활용한 폴리프로필렌 촉매 열분해 연구)

  • Soo Hyun Kim;Seung Hun Baek;Roosse Lee;Sang Jun Park;Jung Min Sohn
    • Clean Technology
    • /
    • v.29 no.3
    • /
    • pp.185-192
    • /
    • 2023
  • This study was conducted to obtain basic process simulation data before conducting pyrolysis experiments for the development of a thermochemical conversion system by recirculation of heat carrier and gases thereby. In this study, polypropylene (PP) was used as a pyrolysis sample material as an alternative to waste plastics, and fluid sand was used as a heat transfer medium in the system. Manganese (Mn) was chosen as the catalyst for the pyrolysis experiment, and the catalyst pyrolysis was performed by impregnating it in the sand. The basic properties of PP were analyzed using a thermogravimetric analyzer (TGA), and liquid oil was generated through catalytic pyrolysis under a nitrogen atmosphere at 600℃. The carbon number distribution of the generated liquid oil was confirmed by GC/MS analysis. In this study, the effects of the presence and the amount of Mn loading on the yield of liquid oil and the distribution of hydrocarbons in the oil were investigated. When Mn/sand was used, the residue decreased and the oil yield increased compared to pyrolysis using sand alone. In addition, as the Mn loading increased, the ratio of C6~C9 range gasoline in the liquid oil gradually increased, and the distribution of diesel and heavy oil with more carbon atoms than C10 in the oil decreased. In conclusion, it was found that using Mn as a catalyst and changing the amount of Mn could increase the yield of liquid oil and increase the gasoline ratio in the product.

Study on Incineration Behavior of Heavy Oil Fly Ash for Valuable Metal Recovery (유가금속(有價金屬) 회수(回收)를 위한 중유회(重油灰)의 연소거동(燃燒擧動)에 관한 연구(硏究))

  • Choi, Young-Yeon;Nam, Chul-Woo;Kim, Byoung-Gyu
    • Resources Recycling
    • /
    • v.18 no.1
    • /
    • pp.22-29
    • /
    • 2009
  • To design and construct a moving bed stoker incinerator for incineration treatment of the domestic oil fly ash, operating condition and moving bed area of incinerator were determined by performing incinerate experiment of the oil fly ash in the muffle furnace which simulates moving bed stoker incinerator in all conditions. Incineration process of the oil fly ash could be divided into 3 stages, every stage needs the appropriate operating condition for effective incineration. The optimum content of water in the heavy oil fly ash was found to be 20 wt% to prevent the ash from flying and reduce the volume. Science combustion rate of oil fly ash depends on the oxygen content, the incinerator must have a equipment to control the oxygen content in the combustion air. The optimum temperature was $750{\sim}800^{\circ}C$ in order to prevent adhesion to the stocker and evaporation of metal compounds of low melting point. Uniform combustion reaction and acceleration of combustion rate required agitation during the combustion of oil fly ash. The incineration rate was $12.53kg/m^2hr$ and the working area of moving bed incinerator was found to be $60m^2$ to incinerate 18 tons of oil fly ash per day.

Corrosion and Materials Selection for Bitumen with Heavy Naphthenic Acid in Canadian Oil Sands

  • Eun, Thomas Jung-Chul
    • Corrosion Science and Technology
    • /
    • v.7 no.6
    • /
    • pp.350-361
    • /
    • 2008
  • Canada's oil sands contain one of the largest reserves of oil in the world. According to recent estimates, there are nearly 180 billion barrels of oil in the Canadian oil sands trapped in a complex mixture of sand, water and clay. More than 40 companies have been currently operating or developing oil sands facilities since the first production in 1967. The process of oil sands upgrading is similar with down stream refinery, but the corrosion environment in upgrading refinery is often more severe than in the refinery because of high chlorides, mineral contents, carbonic acid, heavy viscosity and fouling, higher naphthenic acid [$NA-R(CH_{2})nCOOH$], and greater sulfur contents. Naphthenic acid corrosion (NAC) which is one of the most critical corrosion issues in up & downstream refinery plants was observed for the first time in 1920's in refinery distillation processes of Rumania, Azerbaizan (Baku), Venezuela, and California. As a first API report, the 11th annual meeting stated sources and mechanism of NAC in early 1930's. API has been developing the risk base standards, such as API RP580, 571, and Publication 581 which are based on the worst NAC damage in the world since 2000. Nevertheless not only the NAC phenomena and control in Canadian sands oil process are not much widely known but also there are still no engineering guidances for the Canadian sands oil in API standards. This paper will give NAC phenomina and materials selection guidance against NA environment in Canadian oil sands upgrading processes.

Geological Characteristics of Extra Heavy Oil Reservoirs in Venezuela (베네주엘라 초중질유 저류층 지질 특성)

  • Kim, Dae-Suk;Kwon, Yi-Kyun;Chang, Chan-Dong
    • Economic and Environmental Geology
    • /
    • v.44 no.1
    • /
    • pp.83-94
    • /
    • 2011
  • Extra heavy oil reservoirs are distributed over the world but most of them is deposited in the northern part of the Orinoco River in Venezuela, in the area of 5,500 $km^2$, This region, which has been commonly called "the Orinoco Oil Belt", contains estimated 1.3 trillion barrels of original oil-in-place and 250 billion barrels of established reserves. The Venezuela extra heavy oil has an API gravity of less than 10 degree and in situ viscosity of 5,000 cP at reservoir condition. Although the presence of extra heavy oil in the Orinoco Oil Belt has been initially reported in the 1930's, the commercial development using in situ cold production started in the 1990's. The Orinoco heavy oil deposits are clustered into 4 development areas, Boyaco, Junin, Ayachoco, and Carabobo respectively, and they are subdivided into totally 31 production blocks. Nowadays, PDVSA (Petr$\'{o}$leos de Venzuela, S.A.) makes a development of each production block with the international oil companies from more than 20 countries forming a international joint-venture company. The Eastern Venezuela Basin, the Orinoco Oil Belt is included in, is one of the major oil-bearing sedimentary basins in Venezuela and is first formed as a passive margin basin by the Jurassic tectonic plate motion. The major source rock of heavy oil is the late Cretaceous calcareous shale in the central Eastern Venezuela Basin. Hydrocarbon materials migrated an average of 150 km up dip to the southern margin of the basin. During the migration, lighter fractions in the hydrocarbon were removed by biodegradation and the oil changed into heavy and/or extra heavy oil. Miocene Oficina Formation, the main extra heavy oil reservoir, is the unconsolidated sand and shale alternation formed in fluvial-estuarine environment and also has irregularly a large number of the Cenozoic faults induced by basin subsidence and tectonics. Because Oficina Formation has not only complex lithology distribution but also irregular geology structure, geological evolution and characteristics of the reservoirs have to be determined for economical production well design and effective oil recovery. This study introduces geological formation and evolution of the Venezuela extra heavy oil reservoirs and suggest their significant geological characteristics which are (1) thickness and geometry of reservoir pay sands, (2) continuity and thickness of mud beds, (3) geometry of faults, (4) depth and geothermal character of reservoir, (5) in-situ stress field of reservoir, and (6) chemical composition of extra heavy oil. Newly developed exploration techniques, such as 3-D seismic survey and LWD (logging while drilling), can be expected as powerful methods to recognize the geological reservoir characteristics in the Orinoco Oil Belt.

Evaluation of Petroleum Oil Degrading Mixed Microorganism Agent for the Bioremediation of Petroleum Oil Spilled in Marine Environments (해양유류오염정화를 위한 유류분해 미생물제제의 평가)

  • Sohn, Jae-Hak
    • Journal of Life Science
    • /
    • v.21 no.11
    • /
    • pp.1599-1606
    • /
    • 2011
  • To evaluate the effects of microorganism agents on oil biodegradation, treatability and microcosm studies were conducted. Petroleum oil degrading bacteria were isolated from enriched cultures of oil-contaminated sediment samples using a mineral salts medium (MSM) containing 0.5% Arabian heavy crude oil as the sole carbon source. After a 5 day-incubation period using MSM, mixed microorganisms of three species (strains BS1, BS2 and BS4) degraded 48.4% of aliphatic hydrocarbons and 30.5% of aromatic hydrocarbons. Treatability and microcosm tests were performed in the three different treatment conditions (AO: Arabian heavy crude oil, AO+IN: Arabian heavy crude oil+inorganic nutrient, AO+IN+MM: Arabian heavy crude oil+inorganic nutrient+mixed microorganism agents). Among these, significantly enhanced biodegradation of aliphatic hydrocarbons were observed in AO+IN and AO+IN+MM conditions, without showing any different biodegradation rates in either condition. However, the degradation rates of aromatic hydrocarbons in an AO+IN+MM condition were increased by 50% in the treatability test and by 13% in the microcosm test compared to those in an AO+IN condition. Taken together, it can be concluded that mixed microorganism agents enhance the biodegradation of aliphatic and aromatic hydrocarbons in laboratory, a treatability test, and a microcosm test. This agent could especially be a useful tool in the application of bioremediation for removal of aromatic hydrocarbons.