DOI QR코드

DOI QR Code

Mn/sand 촉매를 활용한 폴리프로필렌 촉매 열분해 연구

A Study on Catalytic Pyrolysis of Polypropylene with Mn/sand

  • 김수현 (전북대학교 자원.에너지공학과) ;
  • 백승훈 (전북대학교 자원.에너지공학과) ;
  • 이루세 (전북대학교 자원.에너지공학과) ;
  • 박상준 (전북대학교 자원.에너지공학과) ;
  • 손정민 (전북대학교 자원.에너지공학과)
  • Soo Hyun Kim (Department of Mineral Resources and Energy Engineering, Jeonbuk National University) ;
  • Seung Hun Baek (Department of Mineral Resources and Energy Engineering, Jeonbuk National University) ;
  • Roosse Lee (Department of Mineral Resources and Energy Engineering, Jeonbuk National University) ;
  • Sang Jun Park (Department of Mineral Resources and Energy Engineering, Jeonbuk National University) ;
  • Jung Min Sohn (Department of Mineral Resources and Energy Engineering, Jeonbuk National University)
  • 투고 : 2023.06.14
  • 심사 : 2023.07.14
  • 발행 : 2023.09.30

초록

본 연구는 '열매체 및 가스 순환형 열분해 시스템' 개발 목적으로 열분해 실험을 진행하기 전, 공정 모사용 기본 데이터 확보를 위해 수행되었다. 폐플라스틱 대체 물질로 폴리프로필렌(Polypropylene, PP)을 열분해 시료로 사용하였으며, 본 시스템에서 열전달 매체로 활용되는 유동사(이하 sand)를 사용하였다. 촉매 열분해 실험을 수행하기 위해 Mn계 물질(이하 Mn)을 촉매로 선택하였으며, sand에 담지하여 촉매 열분해 실험을 수행하였다. 열중량 분석기(Thermogravimetric analyzer, TGA)를 이용하여 PP의 기본 물성을 분석하였고, 질소 분위기 600℃ 조건에서 촉매 열분해를 통해 액상 오일을 생성하였다. 생성된 액상 오일은 GC/MS 분석을 통해 탄소 수 분포를 확인하였다. 본 연구에서는 Mn 담지 유무와 함량 변화에 따른 액상 오일 수율과 오일 내 탄화수소 분포에 미치는 영향을 조사하였다. Mn/sand를 이용하면 sand를 단독으로 활용한 열분해와 비교하여 잔여물이 감소하고 오일 수율이 증가하였다. 또한 Mn 함량 증가에 따라 액상 오일 내 C6~C9 범위 휘발유 비율이 점차 증가하였으며, 오일 내 C10보다 탄소 수가 큰 경유 및 heavy 오일 분포가 감소하는 것으로 확인되었다. 종합하면, Mn을 촉매로 활용하고 함량 변화를 통해 액상 오일 회수량을 증가시키고 생성물 내 휘발유 비율을 증가시킬 수 있을 것으로 판단하였다.

This study was conducted to obtain basic process simulation data before conducting pyrolysis experiments for the development of a thermochemical conversion system by recirculation of heat carrier and gases thereby. In this study, polypropylene (PP) was used as a pyrolysis sample material as an alternative to waste plastics, and fluid sand was used as a heat transfer medium in the system. Manganese (Mn) was chosen as the catalyst for the pyrolysis experiment, and the catalyst pyrolysis was performed by impregnating it in the sand. The basic properties of PP were analyzed using a thermogravimetric analyzer (TGA), and liquid oil was generated through catalytic pyrolysis under a nitrogen atmosphere at 600℃. The carbon number distribution of the generated liquid oil was confirmed by GC/MS analysis. In this study, the effects of the presence and the amount of Mn loading on the yield of liquid oil and the distribution of hydrocarbons in the oil were investigated. When Mn/sand was used, the residue decreased and the oil yield increased compared to pyrolysis using sand alone. In addition, as the Mn loading increased, the ratio of C6~C9 range gasoline in the liquid oil gradually increased, and the distribution of diesel and heavy oil with more carbon atoms than C10 in the oil decreased. In conclusion, it was found that using Mn as a catalyst and changing the amount of Mn could increase the yield of liquid oil and increase the gasoline ratio in the product.

키워드

참고문헌

  1. Sriningsih, W., Saerodji, M. G., Trisunaryanti, W., Armunanto, R., and Falah, I. I., "Fuel production from LDPE plastic waste over natural zeolite supported Ni, Ni-Mo, Co and Co-Mo metals," Procedia Environ. Sci., 20, 215-224 (2014).
  2. Park, K.-B., Jeong, Y.-S., and Kim, J.-S., "Activator-assisted pyrolysis of polypropylene," Appl. Energy, 253, 113558 (2019).
  3. Sharuddin, S. D. A., Abnisa, F., Daud, W. M. A. W., and Aroua, M. K., "A review on pyrolysis of plastic wastes," Energy Convers. Manage., 115, 308-326 (2016).
  4. Syamsiro, M., Saptoadi, H., Norsujianto, T., Noviasri, P., Cheng, S., Alimuddin, Z., and Yoshikawa, K., "Fuel oil production from municipal plastic wastes in sequential pyrolysis and catalytic reforming reactors," Energy Procedia, 47, 180-188 (2014). https://doi.org/10.1016/j.egypro.2014.01.212
  5. Geyer, R., Jambeck, J. R., and Law, K. L., "Production, use, and fate of all plastics ever made," Sci. Adv., 3(7), e1700782 (2017).
  6. Kim, H.-W., Um, N., Park, Y.-S., Lee, Y., and Kim, K.-H., "A Study on the Status and Policy Direction of Collection and Recycling of Waste Plastics," J. Korea Soc. Waste Manag., 35(6), 471-480 (2018). https://doi.org/10.9786/kswm.2018.35.6.471
  7. Park, S.-W., "Waste Policy in the Era of the SDGs: Enactment and Revision Trend of the Plastic Act of EU and Japan," J. Korea Soc. Waste Manag., 38(3), 214-224 (2021).
  8. Park, S.-W. and Park, S.-Y., "Waste Policy in the Era of SDGs: Implementing Plastic Circulation," J. Korea Soc. Waste Manag., 38(3), 185-199 (2021).
  9. Choi, J. W., Yun, S. Y., Cho, W., Kim, J. Y., Kim, S. H., and Lee, J.-Y., "A Study on the Technology to Convert Plastic to Oil Resources using Hydrothermal Liquefaction (HTL)," J. Korea Soc. Waste Manag., 38(1), 20-25 (2021). https://doi.org/10.9786/kswm.2021.38.1.20
  10. Lee, J. W., Kim, J.-K., Jeon, H., and Kim, M.-Y., "Study on the Application of Environmental Assessment of Recycling of Domestic Waste Plastic Pyrolysis Oil for Naphtha Utilization," J. Korea Soc. Waste Manag., 39(5), 418-430 (2022). https://doi.org/10.9786/kswm.2022.39.5.418
  11. Jeon, I.-S., Hwang, S.-J., Park, J.-H., Jang, Y.-C., Kwon, Y., and Kim, B., "Comparative Analysis for Policy Measures on Single-Use Plastic Management between Korea and Japan," J. Korea Soc. Waste Manag., 39(4), 376-388 (2022). https://doi.org/10.9786/kswm.2022.39.4.376
  12. Park, G. and Na, C.-K., "Plastic Waste Recycling: Preparation of Sulfonated Polystyrene Fibers and Cu2+ Adsorption Capacity," J. Korea Soc. Waste Manag., 39(4), 308-314 (2022).
  13. Choi, J.-S., Suh, B.-Y., Kim, D.-Y., and Min, D.-K., "A Study on the Reorganization Plan of PROs according to the Expansion of EPR Items for Plastic Products," J. Korea Soc. Waste Manag., 39(1), 10-16 (2022). https://doi.org/10.9786/kswm.2022.39.1.10
  14. Jang, Y., Son, M., and Park, J. Y., "Plastics Flow Analysis for Korea, 2017-2019," J. Korea Soc. Waste Manag., 39(3), 194-206 (2022). https://doi.org/10.9786/kswm.2022.39.3.194
  15. Kim, Y.-J. and Lee, H. S., "Consideration on the Effect of Marine (micro)Plastics on the Climatic Factor," J. Korea Soc. Waste Manag., 38(5), 377-386 (2021). https://doi.org/10.9786/kswm.2021.38.5.377
  16. Cho, S., Choi, J., Kang, Y., Jeon, T., and Um, N., "Analysis of Microplastics in by-products from Waste Recycling Treatment Facilities in Korea," J. Korea Soc. Waste Manag., 39(3), 239-255 (2022). https://doi.org/10.9786/kswm.2022.39.3.239
  17. Kim, Y.-J., "Adsorption Properties of Hydrophobic Organic Pollutants to Marine Plastic Wastes and Their Role as Transport Media," J. Korea Soc. Waste Manag., 39(3), 185-193 (2022). https://doi.org/10.9786/kswm.2022.39.3.185
  18. Kiran, N., Ekinci, E., and Snape, C., "Recyling of plastic wastes via pyrolysis," Resour. Conserv. Recycl., 29(4), 273-283 (2000). https://doi.org/10.1016/S0921-3449(00)00052-5
  19. Miandad, R., Barakat, M., Aburiazaiza, A. S., Rehan, M., Ismail, I., and Nizami, A., "Effect of plastic waste types on pyrolysis liquid oil," Int. Biodeterior. Biodegrad., 119, 239-252 (2017). https://doi.org/10.1016/j.ibiod.2016.09.017
  20. Piao, G., Aono, S., Kondoh, M., Yamaguchi, M., Yamazaki, R., Fujima, Y., and Mori, S., "Combustion test of refuse derived fuel in fluidized bed," Kagaku Kogaku Ronbunshu, 25(4), 624-628 (1999). https://doi.org/10.1252/kakoronbunshu.25.624
  21. Park, J., Yu, S., Kim, H., Ryu, C., Kim, J., Lee, J., and Heo, J., "Characteristics of Flame Front Propagation in a Fixed Bed of Marine Plastic SRF Cofired with Wood Pellets," J. Korea Soc. Waste Manag., 39(2), 117-126 (2022). https://doi.org/10.9786/kswm.2022.39.2.117
  22. Miandad, R., Barakat, M., Aburiazaiza, A. S., Rehan, M., and Nizami, A., "Catalytic pyrolysis of plastic waste: A review," Process Saf. Environ. Prot., 102, 822-838 (2016).
  23. You, Y.-S., Kim, M.-K., Park, M.-J., and Choi, S.-W., "Development of oxo-biodegradable bio-plastics film using agricultural by-product such as corn husk, soybean husk, rice husk and wheat husk," Clean Technol., 20(3), 205-211 (2014). https://doi.org/10.7464/ksct.2014.20.3.205
  24. Gug, J., Cacciola, D., and Sobkowicz, M. J., "Processing and properties of a solid energy fuel from municipal solid waste (MSW) and recycled plastics," Waste Manage., 35, 283-292 (2015). https://doi.org/10.1016/j.wasman.2014.09.031
  25. Subramanian, P., "Plastics recycling and waste management in the US," Resour., Conserv. Recycl., 28(3-4), 253-263 (2000). https://doi.org/10.1016/S0921-3449(99)00049-X
  26. Miandad, R., Rehan, M., Barakat, M. A., Aburiazaiza, A. S., Khan, H., Ismail, I. M., Dhavamani, J., Gardy, J., Hassanpou, R. A., and Nizami, A.-S., "Catalytic pyrolysis of plastic waste: moving toward pyrolysis based biorefineries," Front. Energy Res., 7, 27 (2019).
  27. Kim, Y.-M., Lee, B., Han, T. U., Kim, S., Yu, T.-U., Bang, B. Y., Kim, J.-S., and Park, Y.-K., "Research on pyrolysis properties of waste plastic films," Appl. Chem. Eng., 28(1), 23-28 (2017).
  28. Dawood, A. and Miura, K., "Catalytic pyrolysis of γ-irradiated polypropylene (PP) over HY-zeolite for enhancing the reactivity and the product selectivity," Polym. Degrad. Stab., 76(1), 45-52 (2002). https://doi.org/10.1016/S0141-3910(01)00264-6
  29. Ahmad, I., Khan, M. I., Khan, H., Ishaq, M., Tariq, R., Gul, K., and Ahmad, W., "Influence of metal-oxide-supported bentonites on the pyrolysis behavior of polypropylene and high-density polyethylene," J. Appl. Polym. Sci., 132(1), 41221 (2015).
  30. Kolts, J. H., "Olefin production over catalytic oxides of Mn and at least one of Nb and a lanthanide," U.S. Patent No. 4,579,997 (1986).
  31. Kolombos, A. J., McNeice, D., and Wood, D. C., "Olefins production by steam cracking over manganese catalyst," U.S. Patents No. 4,087,350 (1978).
  32. Kim, S. H., Lee, R., and Sohn, J. M., "A Study on Catalytic Pyrolysis of Polypropylene with Ni/sand," Clean Technol., 27(3), 232-239 (2021).
  33. Pitz, W. J., Cernansky, N. P., Dryer, F. L., Egolfopoulos, F. N., Farrell, J. T., Friend, D. G., and Pitsch, H., "Development of an Experimental Database and Chemical Kinetic Models for Surrogate Gasoline Fuels," SAE Transactions, 116, 195-216 (2007). https://doi.org/10.4271/2007-01-0175
  34. Cheon, T.-J., Kim, H. J., and Choi, S.-W., "Toluene Catalytic Oxidation by Manganese Oxide:(I) Activity and Characterization," J. Korean Soc. Atmos. Environ., 21(2), 161-168 (2005).
  35. Torres, J. Q., Giraudon, J.-M., and Lamonier, J.-F., "Formaldehyde total oxidation over mesoporous MnOx catalysts," Catal. Today, 176(1), 277-280 (2011). https://doi.org/10.1016/j.cattod.2010.11.089
  36. Kapteijn, F., Singoredjo, L., Andreini, A., and Moulijn, J., "Activity and selectivity of pure manganese oxides in the selective catalytic reduction of nitric oxide with ammonia," Appl. Catal., B, 3(2-3), 173-189 (1994). https://doi.org/10.1016/0926-3373(93)E0034-9
  37. Ramesh, K., Chen, L., Chen, F., Liu, Y., Wang, Z., and Han, Y.-F., "Re-investigating the CO oxidation mechanism over unsupported MnO, Mn2O3 and MnO2 catalysts," Catal. Today, 131(1-4), 477-482 (2008). https://doi.org/10.1016/j.cattod.2007.10.061
  38. Fei, J., Sun, L., Zhou, C., Ling, H., Yan, F., Zhong, X., Lu, Y., Shi, J., Huang, J., and Liu, Z., "Tuning the synthesis of manganese oxides nanoparticles for efficient oxidation of benzyl alcohol," Nanoscale Res. Lett., 12, 1-9 (2017).
  39. Wang, D., Jin, L., Li, Y., Wei, B., Yao, D., and Hu, H., "Upgrading of vacuum residue with chemical looping partial oxidation over Fe-Mn mixed metal oxides," Fuel, 239, 764-773 (2019). https://doi.org/10.1016/j.fuel.2018.11.070