• Title/Summary/Keyword: Heavy metals contamination

Search Result 471, Processing Time 0.026 seconds

Contamination Assessment of Surface Sediments in Urban Rivers, Busan (부산지역 도시하천 표층 퇴적물 오염도 평가에 관한 연구)

  • Kwag, Jin-Suk;Son, Jung-Won;Kim, Chu-In;Song, Bok-Joo
    • Journal of Korean Society on Water Environment
    • /
    • v.37 no.4
    • /
    • pp.296-305
    • /
    • 2021
  • This work investigated heavy metal pollution in surface sediments of rivers in Busan, Korea. Surface sediments were analyzed in order to conduct contamination assessment of organic matter, nutrients, and heavy metal concentrations. Contamination assessment of heavy metals was conducted using geoaccumulation index (Igeo), pollution load index (PLI), and potential ecological risk index (RI). Accumulation of organic matter and nutrients were affected by water discharged from sewage treatment plant. The concentrations of organic matter and nutrients were found to be greater in points which were close to the sewage treatment plant more than points furthest. The concentrations of Pb, Zn, Cu, Cd, Hg, As, Cr, and Ni were found to be greater in surface sediment more than in the background. The mean concentrations of heavy metals were in the order of Zn (323.5 mg/kg) > Cu (70.5 mg/kg) > Pb (39.8 mg/kg) > Cr (33.4 mg/kg) > Ni (13.5 mg/kg) > As (9.4 mg/kg) > Cd (0.84 mg/kg) > Hg (0.092 mg/kg). The result of geoaccumulation indices indicated that Hg > Cr > Cu > Ni > Zn > As > Pb > Cd were found in order of severe contamination by heavy metals. From PLI and RI analysis, it was evident that the Suyeonggang 2 was the most contaminated river.

Status and future perspective for soil contamination of arable land in China

  • Lee, Kyo Suk;Lee, Dong-Sung;Hong, Beong-Deuk;Seo, Il-Hwan;Lim, Chul-Soon;Jung, Hyun-Kyu;Chung, Doug Young
    • Korean Journal of Agricultural Science
    • /
    • v.46 no.4
    • /
    • pp.869-883
    • /
    • 2019
  • China is currently facing great challenges in protecting its arable soil from contamination by heavy metals, especially Cd in paddy soil. China enacted the first soil environmental quality standards (SEQS) for ten pollutants in 1995, and the Ministry of Ecology and Environment released the results of the first nationwide soil survey in 2014. The soil survey showed that as much as 16% of China's soil and 19% of the agricultural soils were contaminated mainly with heavy metals and metalloids beyond the environmental quality limits. The exceeded rate of the contaminant limits in food crops was widespread in China, and the most severe regions were East and Southwest China. Heavy metals and metalloids accounted for 82.4% of the contaminants in soils while organic pollutants accounted for 17% of the contaminants in the soil. Among the heavy metals and metalloids exceeding the Ministry of Environmental Protection (MEP) limit, cadmium (Cd) was highest at 7.0%, followed by nickel (4.8%), arsenic (2.7%), cobalt (2.1%), mercury (1.6%) and lead (1.5%). However, all the average concentrations of the pollutants were lower than the recommended values for the contaminants except for Cd for three levels of pH (< 6.5, 6.5 - 7.5, and > 7.5). According to the Action Plan on Prevention and Control of Soil Pollution released by the State Council in 2016, 90% of contaminated farmland will be made safe by 2020 with an increase to 95% by 2030. Therefore, it is necessary to improve the soil quality to meet the environmental quality standard for soils and heavy metal standards for food safety.

Determination of Cadmium and Zinc Contamination Source in Arable Soil in the Vicinity of a Zinc Smelting Factory

  • Hong, Chang-Oh;Gutierrez, Jessie;Lee, Seul-Bi;Lee, Yong-Bok;Yu, Chan;Kim, Pil-Joo
    • Korean Journal of Environmental Agriculture
    • /
    • v.26 no.3
    • /
    • pp.204-209
    • /
    • 2007
  • Agricultural area in the vicinity of the ${\triangle}{\triangle}$ smelting factory in Kyeongbuk province, the third largest zinc smelting factory in the world, was contaminated by high concentration of heavy metals. However, the heavy metals source was not yet directly traced and thus, resulted to a conflict between the factory and residents within its vicinity. In order to determine the level of heavy metal contamination in the arable lands located at the north eastern part of the factory, soils were sampled systematically. To find out the major reason for the occurrence of this problem, waters and aerosols were sampled with constant intervals to the upward and downward direction from the factory and were analyzed to find out the heavy metal concentrations. Cadmium (Cd) and zinc (Zn) of the heavy metals were highly accumulated more than the Korean warning criteria (Cd 1.5, Zn 300 mg $kg^{-1}$) with mean values 1.7 and 407 mg $kg^{-1}$, respectively, at the surface soils (0-20 cm), and heavy metal concentration significantly decreased with increasing soil depth In addition, the concentration of both metals slightly decreased with increasing distance from the factory to the surface soils. Cadmium and Zn were detected in the upward stream water with low concentration and concentrations increased significantly in the downstream after passing across the factory. Aerosol samples also showed traces of Cd and Zn which could be attributed to the contamination of the water system and the surface soils. Conclusively, Cd and Zn emitted from the ${\triangle}{\triangle}$ smelting factory moved with the aerosol in the atmosphere and thus, contaminated the agricultural areas and the water system within it vicinity.

Pollution of Heavy Metals in Paddy Soils Around the Downstream Area of Abandoned Metal Mine and Efficiency of Reversed Soil Method as Its Remediation (폐금속광산 하부 농경지 토양의 중금속오염과 그 복구방법으로서 반전객토의 효율성)

  • Na, Choon-Ki;Lee, Mu-Seong;Chung, Jae-Il
    • Economic and Environmental Geology
    • /
    • v.30 no.2
    • /
    • pp.123-135
    • /
    • 1997
  • In order to investigate the dispersion patterns and contamination level of heavy metals in the soil-ecosystem and to evaluate the efficiency of soil remediation by reversed soil method, soils and plants were collected from the Dongjin Au-Ag-Cu mine area and analysed for heavy metals. The dispersion patterns of heavy metals in soils and plants show that heavy metal pollutions caused by waste rump around Dongjin mine are mainly found in the vicinity of the waste rump and in the southward slanting of mine. Toxic metallic pollutants from the mine influence heavy metal contents in paddy soils in downstream area, and may be a potential sources of heavy metal pollution on crop plants. Soil samples collected from the remediated rice farming field by reversed method show similar levels of heavy metal content to those from the polluted rice farming field, but topsoil enrichment of heavy metals are not found. Heavy metal contents of the rice plants collected from remediated rice farming field are significantly lower than those from polluted rice farming field, and it suggests that the reversed soil method is effective for the reduction of bioavailability of heavy metals.

  • PDF

Assessment of Selected Heavy Metal Concentrations in Agricultural Soils around Industrial Complexes in Southwestern Areas of Korea

  • Kim, Dong-Jin;Park, Jung-Hwon;Lee, Jin-Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.5
    • /
    • pp.524-530
    • /
    • 2016
  • Agricultural soils near or around industrial complexes can contain a certain amount of heavy metals that readily enter the food chain and negatively affect human health. Therefore, we conducted the study to investigate the distribution of selected heavy metals, including arsenic (As), cadmium (Cd), chromium (Cr), nickel (Ni), lead (Pb), mercury (Hg), and zinc (Zn), in farm-land soils around fifteen industrial complexes in the southwestern provinces, Korea. The concentrations of heavy metals in the soil samples were determined by the pseudo-total aqua regia (3 HCl : $1HNO_3$) digestion procedure. The heavy metal concentrations in most soils examined did not exceed the levels of Soil Contamination Warning Standard (SCWS) for agricultural lands (Region 1) presented in Soil Environment Conservation Law (SECL) established by Ministry of Environment (MOE), Korea. However, only one sampling site showed higher As amount ($27.1mg\;kg^{-1}$) than the SCWS level of As ($25mg\;kg^{-1}$). Pollution index (PI) for heavy metals did not exceed 1.0. The PI values were significantly positively correlated (p < 0.01) with the heavy metal concentrations. In particular, the values of correlation coefficient between the Cd and Pb concentrations and the PI values were higher than those estimated from other combinations, and thus the amounts of Cd and Pb in the agricultural soils highly affected the PI values for the heavy metals.

On-Site Treatment of Soil Contaminated by Heavy Metals and Petroleum using Relocatable Soil Washing Equipment

  • Kim, Taeeung
    • International journal of advanced smart convergence
    • /
    • v.9 no.1
    • /
    • pp.19-28
    • /
    • 2020
  • We studied the on-site treatment of soil contaminated by heavy metals and petroleum was tested using relocatable soil washing equipment for greater remediation efficiency. Different combinations of pH and solid/liquid ratio were tested to determine the optimum balance, settling on values of 5 and 1:2, respectively. Next, soils containing Pb, Hg, and petroleum were further tested to assess the optimum number of washing cycles. The remediation efficiency of Pb and Hg in soil contaminated solely by heavy metals was 90.1% and 86.4% after three and two washings, respectively. The remediation efficiency of petroleum in soil contaminated solely by petroleum was 98.8% after one washing. When soil contaminated by both heavy metals and petroleum was cleaned, up to 91.0% of Pb, 86.9% of Hg, and 96.1% of petroleum was removed after two, one, and one washings, respectively. We conducted all remediation efficiencies and concentration reductions satisfied the standard threshold for soil contamination in South Korea.

Monitoring Research for Heavy Metals as Endocrine Disruptors in Herbal Medicines and Ssangwha-Tang (한약재와 탕액(쌍화탕)중 내분비계 장애물질로서의 개별 중금속의 함량 연구( I ))

  • Kim, Jin-Sook;Hwang, Sung-Won;Kim, Jong-Moon;Ma, Jin-Yeul
    • Korean Journal of Oriental Medicine
    • /
    • v.6 no.1
    • /
    • pp.117-122
    • /
    • 2000
  • The purpose of this study is to compare the contents of heavy metals of boiled ssangwhatang with those of herbal ingredients which are composed of ssangwhatang. Ssangwhatang is used for antifatigue, tonic and so on. With industrial development, our environment has been very polluted. Herbal medicines also are seriously contaminated by heavy metals and pesticides. The herbal medicines of ssangwhatang were bought at 10 defferent markets. The contents of 14 heavy metals(Ag, As, Ba, Cd, Cr, Cu, Fe, Hg, Mn, Ni, Pb, Sb, Sn, Zn) were analysed using ICP. It was found out that 7 heavy metals(Pb, As, Ba, Cd, Hg, Sb, Sn) were not detected at all in boiled ssangwhatangs. But they were detectable in all ssangwhatangingredients before boiling. For example, the content of Pb in one pack of ssangwhatang before boiling was $0.039^{\circ}{\pm}0.005mg$ and Pb in boiled one was not detected. Herbal medicine itself is seriously contaminated by heavy metals. These results suggest that boiled ssangwhatang which we take is safe from the contamination of heavy metals.

  • PDF

Effects of Heavy Metals on Amphibian Embryos, Tadpoles, and Adults (중금속이 양서류 배아, 유생 및 성체에 미치는 영향에 관한 소고)

  • Park, Chan Jin;Ahn, Hyo Min;Gye, Myung Chan
    • Korean Journal of Environmental Biology
    • /
    • v.30 no.4
    • /
    • pp.287-306
    • /
    • 2012
  • Amphibian population declines globally. Environmental contamination by heavy metals has been suspected to the one of the reason for distinction of amphibian which has obligate aquatic life style during larval period. Amphibians have been widely accepted as animal model for the study of endocrine disruption in aquatic ecosystem at molecular as well as individual levels. There are increasing need for toxicological data in amphibians at multiple endpoints for management of contamination and development of safety guidelines. Here, we reviewed toxicological information about toxicity of heavy metals (arsenic, cadmium, chromium, copper, lead, mercury, nickel, zinc) on various end-point of amphibian.

Environmental contamination and geochemical behaviour of heavy metals around the abandoned Songcheon Au-Ag mine, Korea

  • Lim Hye-sook;Lee Jin-Soo;Chon Hyo-Teak;Sager Manfred
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.544-547
    • /
    • 2003
  • The objective of this study is to investigate the contamination levels and dispersion patterns of arsenic and heavy metals and to estimate the bioaccessible fraction of the metals in soil and plant samples in the vicinity of the abandoned Songcheon Au-Ag mine. Tailings, soils, plants (Chinese cabbage, red pepper, soybean, radish, sesame leaves, green onion, lettuce, potato leaves, angelica and groundsel) and waters were collected around the mine site. After appropriate preparation, all samples were analyzed for As, Cd, Cu, Pb and Zn by ICP-AES and ICP-MS. Elevated levels of As and heavy metals were found in tailings. Mean concentrations of As in agricultural soils were higher than the permissible level. Especially, maximum level of As in farmland soil was 513 mg/kg. The highest concentrations of As and Zn were found in Chinese cabbage (6.7 mg/kg and 359 mg/kg, respectively). Concentrations of As, Cd, and Zn in most stream waters which are used for drinking water around this mine area were higher than the permissible levels regulated in Korea. Maximum levels of As, Cd and Zn in stream waters were 0.78 mg/L, 0.19 mg/L and 5.4 mg/L, respectively. These results indicate that mine tailings can be the main contamination sources of As and heavy metals in the soil-water system in the mine area. The average of estimated bioaccessible fraction of As in farmland soils were $3.7\%$ (in simulated stomach) and $10.8\%$ (in simulated small intestine). The highest value of bioaccessible fraction of metal in farmland soils was $46.5\%$ for Cd.

  • PDF