• Title/Summary/Keyword: Heavy metal tolerance

Search Result 82, Processing Time 0.031 seconds

Risk Assessment of As, Cd, Cu and Pb in Different Rice Varieties Grown on the Contaminated Paddy Soil (중금속 오염 논토양에서 재배된 벼 품종간 위해성평가 비교)

  • Kim, Won-Il;Kim, Jin-Kyoung;Yoo, Ji-Hyock;Paik, Min-Kyoung;Park, Sang-Won;Kwon, Oh-Kyung;Hong, Moo-Ki;Yang, Jay-E;Kim, Jeong-Gyu
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.42 no.1
    • /
    • pp.53-57
    • /
    • 2009
  • Heavy metal pollution may be one of the most serious challenges confront crop production and human health. Therefore, the selection of heavy metal tolerance cultivars which adapted to the contaminated fields will introduced a suitable solution for management this critical environmental risk. The objectives of this research is to assess human health risk using geochemical analyses and exposure assessment of heavy metals in rice cultivars. Risk for inhabitants in the closed mine area was comparatively assessed for As, Cd, Cu and Pb in 10 rice varieties as a major exposure pathway. The average daily dose (ADD) of each heavy metal was estimated by analyzing the exposure pathways to rice and soil. For the non-carcinogenic risk characterization, Hazard Quotient (HQ) and Hazard Index (HI) were calculated using toxicity indices provided by US-EPA IRIS. The different rice varieties revealed a wide range of HI values from 23.6 to 34.3, indicating that all rice varieties have a high potential toxic risk. The DA rice variety showed the lowest HI value while the TB rice variety the highest. The probabilities of cancer risk for As via rice consumption were varied with rice varieties ranging from 2.0E-03 to 3.5E-03 which exceeded the regulatory acceptable risk of 1 in 10,000 set by US-EPA. The DA rice variety also showed the lowest value while the TB rice variety gave the highest value. Our results indicate that risk assessment can be contribute to screen the pollution safe rice cultivars in paddy fields affected by the mining activity.

Treatment of Contaminated Sediment for Water Quality Improvement of Small-scale Reservoir (소하천형 호수의 수질개선을 위한 퇴적저니 처리방안 연구)

  • 배우근;이창수;정진욱;최동호
    • Journal of Soil and Groundwater Environment
    • /
    • v.7 no.4
    • /
    • pp.31-39
    • /
    • 2002
  • Pollutants from industry, mining, agriculture, and other sources have contaminated sediments in many surface water bodies. Sediment contamination poses a severe threat to human health and environment because many toxic contaminants that are barely detectable in the water column can accumulate in sediments at much higher levels. The purpose of this study was to make optimal treatment and disposal plan o( sediment for water quality improvement in small-scale resevoir based on an evaluation of degree of contamination. The degree of contamination were investigated for 23 samples of 9 site at different depth of sediment in small-scale J river. Results for analysis of contaminated sediments were observed that copper concentration of 4 samples were higher than the regulation of hazardous waste (3 mg/L) and that of all samples were exceeded soil pollution warning levels for agricultural areas. Lead and mercury concentration of all samples were detected below both regulations. Necessary of sediment dredge was evaluated for organic matter and nutrient through standard levels of Paldang lake and the lower Han river in Korea and Tokyo bay and Yokohama bay in Japan. The degree of contamination for organic matter and nutrient was not serious. Compared standard levels of Japan, America, and Canada for heavy metal, contaminated sediment was concluded as lowest effect level or limit of tolerance level because standard levels of America and Canada was established worst effect of benthic organisms. The optimal treatment method of sediment contained heavy metal was cement-based solidification/stabilization to prevent heavy metal leaching.

Multiple Tolerances and Dye Decolorization Ability of a Novel Laccase Identified from Staphylococcus Haemolyticus

  • Li, Xingxing;Liu, Dongliang;Wu, Zhaowei;Li, Dan;Cai, Yifei;Lu, Yao;Zhao, Xin;Xue, Huping
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.4
    • /
    • pp.615-621
    • /
    • 2020
  • Laccases are multicopper oxidases with important industrial value. In the study, a novel laccase gene (mco) in a Staphylococcus haemolyticus isolate is identified and heterologously expressed in Escherichia coli. Mco shares less than 40% of amino acid sequence identities with the other characterized laccases, exhibiting the maximal activity at pH 4.0 and 60℃ with 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid) diammonium salt (ABTS) as a substrate. Additionally, the Mco is tolerant to a wide range of pH, heavy metal ions and many organic solvents, and it has a high decolorization capability toward textile dyes in the absence of redox mediators. The characteristics of the Mco make this laccase potentially useful for industrial applications such as textile finishing. Based on BLASTN results, mco is found to be widely distributed in both the bacterial genome and bacterial plasmids. Its potential role in oxidative defense ability of staphylococci may contribute to the bacterial colonization and survival.

QTL analysis of for micronutrient content in rice grain

  • Lee, Hyun-Sook;Shim, Kyu-Chan;Jeon, Yun-A;Ahn, Sang-Nag
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.144-144
    • /
    • 2017
  • Micronutrients such as zinc (Zn), iron (Fe), manganese (Mn) have important roles for development and growth in plants but it also have roles in animals and humans. In previous studies, a Korean weedy rice, KH2J was selected to have tolerance to heavy metal, lead (Pb) compared with a cultivar, Milyang23. To identify QTLs for micronutrients concentration in grain, an F2 population (120 plants) were developed from a cross between KH2J and an indica rice cultivar, Milyang23. To measure the concentration of eight ions, Zn, Fe, Mn, Pb, calcium (Ca), copper (Cu), cadmium (Cd) and arsenic (As), grains were collected and digested with 65% nitric acid, and the ion contents were measured using inductively coupled plasma mass spectrometry. A total 27 putative quantitative trait loci (QTLs) were detected on 12 chromosomes by single point analysis and 22 putative QTLs were detected by composite interval mapping. The co-locations of QTL for Zn, Fe and Mn were observed on chromosome 5. The QTLs for Cd, Cu and Zn were co-localized on chromosome 10, and QTLs for Zn, As and Mn was on chromosome 12. The Zn concentration in F2 generation showed significant correlation with concentrations of As (r = -0.4), Cu (r = 0.5) and Fe (r = 0.2) (P < 0.01). Also, the Ca concentration was significantly related with Mn and Fe concentrations (P < 0.01). Fine mapping of these QTLs is underway to analyze their functional relationship.

  • PDF

Mapping Quantitative Trait Loci Associated with Arsenic Toxicity Stress in a Double Haploid Population of Rice (Oryza sativa L.)

  • Saleem Asif;Rahmatullah Jan;Kyung-Min Kim
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.282-282
    • /
    • 2022
  • Arsenic (As) is a toxic heavy metal that affects the major rice-growing regions of the world and can cause cancer in humans. Rice paddy fields in South Asia are mostly dependent on arsenic-contaminated water sources due to which rice takes up the arsenic from the soil through roots and accumulates it in plant different parts. Here, we present a quantitative trait locus (QTL) mapping study to find out candidate genes conferring As toxicity tolerance in rice (Oryza sativa L.) at the seedling stage. Three weeks old, 120 double haploid CNDH lines derived from a cross between the Indica variety Cheongcheong and the Japonica variety Nagdong and their parental lines were used by treating with 25 μM As. After 2 weeks ofAs stress, 5 traits such as; shoot length (SL), root length (RL), shoot fresh weight (SFW), root fresh weight (RFW), and chlorophyll contents (CHC) were measured. A linkage map of 12 rice chromosomes was constructed from genotypic data DH lines using 778 SSR markers. The linkage map covered a total genetic distance of 2121.7 cM of the rice genome with an average interval of 10.6 cM between markers. A total of seventeen QTLs (LOD>2) were mapped on chromosomes 1, 2, 3, 6, 7, 8, 9, 11, and 12 using composite interval mapping with trait-increasing alleles coming from both parents. Five QTLs for SL, Two QTLs for RL, Five QTLs for SHL, Three QTLs for RFW, and Two QTLs for CHC were detected. The QTLs related to CHC were selected for forther study.

  • PDF

Distribution of hazardous heavy metals in commercial herbal medicines classified by plant parts used in seoul (서울지역 유통한약재의 약용부위에 따른 유해중금속 분포)

  • Kim, Donggyu;Kim, Bogsoon;Han, Eunjung;Han, Changho;Kim, Oukhee;Choi, Byunghyun;Hwang, Insook;Chae, Youngzoo;Kim, Minyoung;Park, Seungkook
    • Analytical Science and Technology
    • /
    • v.22 no.6
    • /
    • pp.504-513
    • /
    • 2009
  • In this study, the safety of commercial herbal medicines was evaluated by determining concentration of hazardous heavy metals. 3,152 samples (244 types) purchased by individual packing unit from market in Seoul, were analyzed using ICP-MS and mercury analyzer. As a result, the content (mg $kg^{-1}$) of Pb was higher in the above-ground part (0.92) than underground part (0.43). But in case of As and Cd contents, there is slightly higher in the underground-parts (0.26, 0.13) than the above-ground parts (0.18, 0.08). There were many herbal medicines exceeding regulatory limits of Cd comparing with other metals. The levels of Hg seemed to be different between above-ground part(0.009) and underground part (0.008) but there was no sample exceeding tolerance limits. In the comparison of imported samples with domestic herbal medicines, it was shown that Pb, As, and Hg were measured highly in the imported ones, Cd was not significantly different (t-test, p<0.05). The significant correlation was observed between Pb and As (r=0.386, p<0.01) but there was no difference in other parts. The heavy metal contamination of herbal medicines measured in total amount of respective heavy metals (mg $kg^{-1}$) was high in Flos (6.241) and Caulis (2.238), and decreased in the order of Cortex (1.634), Herba (1.154), Perithecium (0.861), Rhizoma (0.828), Radix (0.825), Fructus (0.475), and was low in Semen (0.422) (ANOVA-test, p<0.05).

Application of Liriope platyphylla, Ornamental Korean Native Plants, for Contaminated Soils in Urban Areas (도시 내 중금속 오염지의 관상식물로서 자생 맥문동(Liriope platyphylla)의 적용성 평가)

  • Ju, Jin-Hee;Yoon, Yong-Han
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.42 no.5
    • /
    • pp.81-87
    • /
    • 2014
  • Heavy metal pollution is a widespread global problem causing serious environmental concern. Heavy metals such as Cd, Pb, and Zn can induce toxicity in all organisms if the soil levels of contaminants reach critical values. The aim of the present study was to examine the application of Liriope platyphylla, an ornamental Korean native plant with great potential for contaminated soil in urban areas, to determine tolerance for Cd, Pb, and Zn. Plants were grown in amended artificial soil with Cd, Pb, and Zn at 0, 100, 250, and $500mg{\cdot}kg^{-1}$ for 7 months. The length of leaf, width of leaf, total leaf number, dead leaf number, new leaf number, chlorophyll contents, and ornamental value were monitored from May to August, during growth the period. The relative leaf length and leaf width displayed rapidly decreasing tendencies with an increasing Cd concentration beginning from 4 months after planting. The same decreasing tendency was observed in total leaf number, new leaf number, chlorophyll contents, and ornamental values showed a trend of Control> $Cd_{100}$ > $Cd_{250}$ > $Cd_{500}$. In Pb concentration treatments, the relative leaf length and leaf width were significantly lower in plants grown at $250mg{\cdot}kg^{-1}$ and $500mg{\cdot}kg^{-1}$ as compared to the Control, $100mg{\cdot}kg^{-1}$. The total leaf number, new leaf number, and dead leaf number did not show significant difference among treatments in Control and $Pb_{100}$ but chlorophyll contents and ornamental value decreased with increasing Pb supply concentration treatments. However, in Zn supply treatments, the relative leaf length was higher at $100mg{\cdot}kg^{-1}$ than the Control, $250mg{\cdot}kg^{-1}$, $500mg{\cdot}kg^{-1}$, but the relative leaf width decreased compared to the Control, $Zn_{100}$, $Zn_{250}$, and $Zn_{500}$. The total leaf number, dead leaf number, new leaf number, and ornamental value showed the lowest value in plants grown in $Zn_{500}$ treatment but no significant differences were found among other treatments.

Application of Weed Species as the Diagnostic Indicator Plants of Environmental Pollution (환경오염(環境汚染) 진단(診斷) 지표식물(指標植物)로서 잡초종(雜草種)의 활용(活用)에 관(關)한 연구(硏究))

  • Kang, Byeung-Hoa;Shim, Sang-In;Lee, Sang-Gak
    • Korean Journal of Environmental Agriculture
    • /
    • v.15 no.1
    • /
    • pp.46-69
    • /
    • 1996
  • The studies were conducted to obtain the basic information of the effects of pollutants on plant species and to select the plant species showing specific responses to the pollutants. For these purposes, paraquat, ammonium, and cadmium as a source of oxidative stress, nitrogen toxicity, and heavy metal toxicity respectively were treated to the plant species. Among the tested plants, Lamiaceae, Brassicaceae, and Caryophyllaceae were tolerant to paraquat, whereas Poaceae and Asteraceae were sensitive. Especially Mosla dianthera of Lamiaceae, Hemistepta lyrata and Aster pilosus of Asteraceae, and Paspalum thunbergii of Poaceae showed higher tolerance than others. Paraquat resistance was related with life style, overwintering capacity, so perennial and biennial species showed higher tolerance than annual species. In response to ammonium, Poaceae showed higher resistance while Fabaceae and Caryophyllaceae showed sensitiveness. Weed species having tolerance to ammonium were Echinochloa crus-galli var. praticola, Panicum dichotomiflorum, Setaria glauca, Chenopodium album, and Solanum nigrum, while Mosla dianthera, Arenaria serpyllifolia and Perilla frutescens var. japonica showed sensitiveness. In the response of plant species to cadmium, Digitaria sanguinalis, Amaranthus lividus showed higher resistance, whereas Galinsoga parviflora, Plantago asiatica, Ambrosia trifida, and Paspalum thunbergii showed sensitiveness. The injured degree on germination stage by pollutants did not related with injured degree on matured stage. During germination, the root elongation was more sensitive than shoot elongation by pollutants, paraquat, ammonium, and cadmium.

  • PDF

Investigation of the Rice Plant Transfer and the Leaching Characteristics of Copper and Lead for the Stabilization Process with a Pilot Scale Test (논토양 안정화 현장 실증 시험을 통한 납, 구리의 용출 저감 및 벼로의 식물전이 특성 규명)

  • Lee, Ha-Jung;Lee, Min-Hee
    • Economic and Environmental Geology
    • /
    • v.45 no.3
    • /
    • pp.255-264
    • /
    • 2012
  • The stabilization using limestone ($CaCO_3$) and steel making slag as the immobilization amendments for Cu and Pb contaminated farmland soils was investigated by batch tests, continuous column experiments and the pilot scale feasibility study with 4 testing grounds at the contaminated site. From the results of batch experiment, the amendment with the mixture of 3% of limestone and 2% of steel making slag reduced more than 85% of Cu and Pb compared with the soil without amendment. The acryl column (1 m in length and 15 cm in diameter) equipped with valves, tubes and a sprinkler was used for the continuous column experiments. Without the amendment, the Pb concentration of the leachate from the column maintained higher than 0.1 mg/L (groundwater tolerance limit). However, the amendment with 3% limestone and 2% steel making slag reduced more than 60% of Pb leaching concentration within 1 year and the Pb concentration of leachate maintained below 0.04 mg/L. For the testing ground without the amendment, the Pb and Cu concentrations of soil water after 60 days incubation were 0.38 mg/L and 0.69 mg/l, respectively, suggesting that the continuous leaching of Cu and Pb may occur from the site. For the testing ground amended with mixture of 3% of limestone + 2% of steel making slag, no water soluble Pb and Cu were detected after 20 days incubation. For all testing grounds, the ratio of Pb and Cu transfer to plant showed as following: root > leaves(including stem) > rice grain. The amendment with limestone and steel making slag reduced more than 75% Pb and Cu transfer to plant comparing with no amendment. The results of this study showed that the amendment with mixture of limestone and steel making slag decreases not only the leaching of heavy metals but also the plant transfer from the soil.

Biogeochemical Remediation of Cr(VI)-Contaminated Groundwater using MMPH-0 (Enterobacter aerogenes) (MMPH-0 (Enterobacter aerogenes)에 의한 6가 크롬 오염 지하수의 생지화학적 정화)

  • Seo, Hyun-Hee;Rhee, Sung-Keun;Kim, Kang-Joo;Park, Eun-Gyu;Kim, Yeong-Kyoo;Chon, Chul-Min;Moon, Ji-Won;Roh, Yul
    • Economic and Environmental Geology
    • /
    • v.45 no.2
    • /
    • pp.105-119
    • /
    • 2012
  • Indigenous bacteria isolated from contaminated sites play important roles to remediate contaminated groundwater. Chromium has the most stable oxidation states. Cr(VI) is toxic, carcinogenic, and mobile, but Cr(III) is less toxic and immobile. In this study, indigenous microorganism (MMPH-0) was enriched from Cr(VI) contaminated groundwater, and identified by 16S rRNA gene analysis. Using MMPH-0, the effect of stimulating with e-donors (glucose, lactate, acetate, and no e-donor control), respiration conditions, biomass, tolerance, and geochemical changes on Cr(VI) reduction were investigated in batch experiments for 4 weeks. The changes of Cr(VI) concentration and geochemical conditions were monitored using UV-vis-spectrophotometer and Eh-pH meter. And the morphological and chemical characteristics of MMPH-0 and precipitates in the effluents were characterized by TEM-EDS and SEM-EDS analyses. MMPH-0 (Enterobacter aerogenes) was able to tolerate up to 2000 mg/L Cr(VI) and reduce Cr(VI) under aerobic and anaerobic conditions. MMPH-0 performed faster and higher efficiency of Cr(VI) reduction with electron donors (over 70% after 1 week with e-donor, 10-20% after 4 weeks without e-donor). The changes of Eh-pH in effluents showing the tendency from oxidizing to reducing condition and a bit of acidic change in pH due to microbial oxidation of organic matters donating electrons and protons suggested the roles of MMPH-0 on Cr(VI) in the contaminated water catalyzing to transit geochemical stable zone for more stable $Cr(OH)_3$ or Cr(III) precipitates. TEM/SEM-EDS analyses of MMPH-0 and precipitates indicate direct and indirect Cr(VI) reduction: extracellular polymers capturing Cr component outside cells. These results suggested diverse indigenous bacteria and their biogeochemical reactions might enhance more effective and feasible remediation technology of redox sensitive heavy metals in metal-contaminated in groundwater.