• 제목/요약/키워드: Heavy metal selectivity

검색결과 54건 처리시간 0.029초

MCM-41 및 팽창흑연의 중금속 흡착특성 (Adsorption property of heavy metals onto MCM-41 and expanded graphite)

  • 이명은;이채영;강석태;김상현;조윤철;김수홍;정재우
    • 상하수도학회지
    • /
    • 제26권2호
    • /
    • pp.275-283
    • /
    • 2012
  • MCM-41(Mobil's Composition of Matter-41) and expanded graphite(EG) were investigated as potential adsorbents for heavy metal ions including Pb(II), Cu(II) and Ni(II) in various aqueous chemistries. MCM-41 showed shorter equilibrium times and higher adsorption capacities for all three heavy metal ions compared to expanded graphite. The adsorption of three heavy metal ions was significantly affected by the solution pH due to the competition with $H_{3}O^{+}$ at lower pH and precipitation at neutral or higher pH. Adsorptions of heavy metal ions onto MCM-41 and expanded graphite were successfully described with the pseudo-second-order model. During the competitive adsorption of three heavy metal ions, the selectivity of Pb(II) was highest and almost same selectivity was observed with Cu(II) and Ni(II) when MCM-41 was used as an adsorbent, while the expanded graphite exhibited the highest selectivity to Pb(II), followed by Ni(II) and Cu(II).

미역 폐기물 및 미역폐기물 유도체에 의한 중금속이온의 생물흡착 (Biosorption of Heavy-metal Ions by Waste Brown Seaweed and Their Derivatives)

  • 박권필;김태희;김영숙;차왕석;우명우
    • 한국환경과학회지
    • /
    • 제10권2호
    • /
    • pp.153-158
    • /
    • 2001
  • The biosorption abilities of different parts of waste brown seaweeds and their derivatives to remove heavy metals (Cd, Zn, Pb, Cu, Fe, Ni, Mn) from waste were evaluated. The two parts of waste brown seaweeds (Undaria pinnatifida) were stems and sporophyls, and the brown seaweed derivatives were alginic fibers, active carbon added alginate(AC-alginate) and dealginate. The abilities of the sporophyls to adsorb the heavy metal ions were higher than those of stems, and those of alginates were slightly higher than those of dealginate in single ion solution. With decreasing the size of biosorbents, the velocity and the amount of adsorption increased. The abilities of alginate to remove the heavy metal ions increased in multi-ion solutions by adding active carbon to alginate. The selectivity of these biosorbents(alginate, AC-alginate) to lead ion was highest and to manganese ion was lowest.

  • PDF

유기 벤토나이트에 의한 중금속 흡착특성 (Adsorption of Heavy Metals on Organobentonite)

  • 유지영;최재영;박재우
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2001년도 총회 및 춘계학술발표회
    • /
    • pp.168-171
    • /
    • 2001
  • Organobentonite modified with hexadecyltrimethylammonium (HDTMA) was used to quantify an adsorption of heavy metals. Based on preliminary experiments, optimal soil/solution ratio, a range of pH, and electrolyte were selected. Adsorption experiments of cadmium and lead were conducted to quantify an adsorption selectivity to bentonite and organobentonite. Adsorption of cadmium and lead to bentonite was increased with increasing a soil/solution ratio. Adsorption of cadmium and lead to bentonite was increased with increasing a soil/solution ratio. Adsorptions of heavy metal to organobentonite were slightly reduced relative to bentonite. This study used the principle of hard-soft-acid-base (HBAB) to interpretate an adsorption mechanism. Because of competition between cadmium and lead. adsorption of cadmium and lead was reduced in mixture of heavy metals. Adsorption selectivity.

  • PDF

Design and Synthesis of Metallopeptide Sensors: Tuning Selectivity with Ligand Variation

  • Kim, Joung-Min;Joshi, Bishnu Prasad;Lee, Keun-Hyeung
    • Bulletin of the Korean Chemical Society
    • /
    • 제31권9호
    • /
    • pp.2537-2541
    • /
    • 2010
  • We chose a fluorescent pentapeptide sensor (-CPGHE) containing a dansyl fluorophore as a model peptide and investigated whether the selectivity and sensitivity of the peptides for heavy and transition metal ions could be tuned by changing amino acid sequence. In this process, we developed a selective peptide sensor, Cp1-d (-HHPGE, $K_d\;=\;670\;nM$) for detection of $Zn^{2+}$ in 100% aqueous solution and a selective and sensitive peptide sensor, Cp1-e (-CCHPGE, $K_d\;=\;24\;nM$) for detection of $Cd^{2+}$ in 100% aqueous solution. Overall results indicate that the selectivity and sensitivity of the metallopeptide sensors to specific heavy and transition metal ions can be tuned by changing amino acid sequence.

Synthesis and Selective Transport Properties of Cleft-Type Ionophores Having Two Convergent Hydroxamic Acid Functions

  • 김덕희;최미정;장석규
    • Bulletin of the Korean Chemical Society
    • /
    • 제22권7호
    • /
    • pp.699-702
    • /
    • 2001
  • A series of cleft-type ionophores having two convergent hydroxamic acid functions are prepared and their selective ionophoric properties toward heavy metal and transition metal ions have been investigated. Hydroxamic acids 3 exhibited a prominent selectivity toward heavy metal ions of Hg2+ and Pb2+, and transition metal ions of Cu2+ over other transition metal and alkaline earth metal ions from slightly acidic source phase (pH 6) to an acidic receiving phase (pH 1). Selective ionophoric properties toward Pb2+ and Cu2+ ions over other surveyed metal ions are also confirmed by the FAB-MS measurements.

Biochemical and Biodiversity Insights into Heavy Metal Ion-Responsive Transcription Regulators for Synthetic Biological Heavy Metal Sensors

  • Jung, Jaejoon;Lee, Sang Jun
    • Journal of Microbiology and Biotechnology
    • /
    • 제29권10호
    • /
    • pp.1522-1542
    • /
    • 2019
  • To adapt to environmental changes and to maintain cellular homeostasis, microorganisms adjust the intracellular concentrations of biochemical compounds, including metal ions; these are essential for the catalytic function of many enzymes in cells, but excessive amounts of essential metals and heavy metals cause cellular damage. Metal-responsive transcriptional regulators play pivotal roles in metal uptake, pumping out, sequestration, and oxidation or reduction to a less toxic status via regulating the expression of the detoxification-related genes. The sensory and regulatory functions of the metalloregulators have made them as attractive biological parts for synthetic biology, and the exceptional sensitivity and selectivity of metalloregulators toward metal ions have been used in heavy metal biosensors to cope with prevalent heavy metal contamination. Due to their importance, substantial efforts have been made to characterize heavy metal-responsive transcriptional regulators and to develop heavy metal-sensing biosensors. In this review, we summarize the biochemical data for the two major metalloregulator families, SmtB/ArsR and MerR, to describe their metal-binding sites, specific chelating chemistry, and conformational changes. Based on our understanding of the regulatory mechanisms, previously developed metal biosensors are examined to point out their limitations, such as high background noise and a lack of well-characterized biological parts. We discuss several strategies to improve the functionality of the metal biosensors, such as reducing the background noise and amplifying the output signal. From the perspective of making heavy metal biosensors, we suggest that the characterization of novel metalloregulators and the fabrication of exquisitely designed genetic circuits will be required.

Removal Characteristics of Heavy Metal by Na-P1 Zeolite Synthesized from Coal Fly Ash

  • Mingyu Lee;Don
    • 한국환경과학회지
    • /
    • 제1권2호
    • /
    • pp.167-175
    • /
    • 1992
  • This study was conducted for an efficient utilization of waste fly ash obtained from the power plant. Fly ash was used for synthesizing zeolite. Na-Pl zeolite could be easily synthesized from waste fly ash and showed the potential to remove heavy metal ions. The synthetic zeolite showed good adsorption property for heavy metal much better than raw fly ash and natural zeolites. Na-Pl exhibited the high adsorption efficiency with a maximum value of 260 Pb mg/g and strong affinity for Pb2+ ion. The metal ion selectivity of Na-Pl was determined in a decreasing order : $Pb^{2+}$>$Cd^{2+}$>$Cu^{2+}$+>$Zn^{2+}$>$Fe^{3+}$

  • PDF

Removal Characteristics of Heavy Metal by Na-P1 Zeolite Synthesized from Coal Fly Ash

  • Lee Mingyu;Lee Donghwan;Oh Yunghee;Ahn Byoungjoon
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • 제1권2호
    • /
    • pp.167-175
    • /
    • 1997
  • This study was conducted for an efficient utilization of waste fly ash obtained from the power plant. Fly ash was used for synthesizing zeolite. Na-P1 zeolite could be easily synthesized from waste fly ash and showed the potential to remove heavy metal ions. The synthetic zeolite showed good adsorption property for heavy metal much better than raw fly ash and natural zeolites. Na-P1 exhibited the high adsorption efficiency with a maximum value of 260 Pb mg/g and strong affinity for $Pb^{2+}$ ion. The metal ion selectivity of Na-P1 was determined in a decreasing order : $Pb^{2+}>Cd^{2+}>Cu^{2+}>Zn^{2+}>Fe^{3+}$.

  • PDF

제주 스코리아로부터 합성된 Na-P1 제올라이트에 의한 2가 중금속 이온의 제거특성 (Removal of Divalent Heavy Metal Ions by Na-P1 Synthesized from Jeju Scoria)

  • 감상규;현성수;이민규
    • 한국환경과학회지
    • /
    • 제20권10호
    • /
    • pp.1337-1345
    • /
    • 2011
  • The removal performances of divalent heavy metal ions ($Pb^{2+}$, $Cu^{2+}$, $Cd^{2+}$, $Sr^{2+}$ and $Mn^{2+}$) were studied using the Na-P1 zeolite synthesized from Jeju scoria in the batch and continuous fixed column reactor. The uptakes of heavy metal ions by synthetic Na-P1 zeolite decreased in the order of $Pb^{2+}$ > $Cu2^{2+}$ > $Cd^{2+}$ > $Sr^{2+}$ > $Mn^{2+}$ based on the selectivity of each ion to ionic exchange site of Na-P1 zeolite for single and mixed solutions in batch or continuous fixed column reactor. For mixed solution, each heavy metal ion uptake was lower than that in single solution, and especially the uptake for $Mn^{2+}$ decreased greatly. In batch reactor, the uptakes of heavy metal ions by synthetic Na-P1 zeolite were described by Freundlich or Langmuir equation, but they followed the former better than the latter. In continuous fixed column reactor, the maximum ion exchange capacity obtained for each of heavy metal ions, was about 90----- of that in batch reactor. The uptakes of heavy metal ions by synthetic Na-P1 zeolite increased with the increase of initial heavy metal concentration and solution pH, and the decrease of the amount and particle size of synthetic zeolite.

합성한 crown ether 모델 화합물에서 금속이온의 추출 특성 연구 (Property about Extraction of Metal Ion in the Synthesized Crown Ether Model Compounds)

  • 이용희;서명교;노종수;이국의;이영세
    • 한국산업융합학회 논문집
    • /
    • 제6권3호
    • /
    • pp.165-169
    • /
    • 2003
  • To extract alkali metal ions and heavy metal ions, search for crown ether model compounds (4a-b, 5a-b, 6a-b) bearing side arm has led to achieve in 5~6 steps starting from 2,6-dimethylaniline. The determination of structure in their compound derivatives were on the basis of melting point and nuclear magnetic resonance spectroscopy. In the solvent extraction of metal ions from the synthesized derivatives, we observed that silver ion has only high selectivity for synergistic ligation of crown ether.

  • PDF