• 제목/요약/키워드: Heavy metal contaminated soil

검색결과 378건 처리시간 0.025초

Study for Phytostabilization using Soil Amendment and Aster koraiensis Nakai in Heavy Metal Contaminated Soil of Abandoned Metal Mine

  • Jung, Mun-Ho;Lee, Sang-Hwan;Ji, Won-Hyun;Park, Mi-Jeong;Jung, Kang-Ho
    • 한국토양비료학회지
    • /
    • 제49권5호
    • /
    • pp.627-634
    • /
    • 2016
  • The objectives of this study were to select optimal soil amendments through analysis of heavy metal availability in soil and uptake to Aster koraiensis Nakai for forest rehabilitation of heavy metal contaminated soil of abandoned metal mine. A. koraiensis was cultivated for 6 months at contaminated soil with several soil treatments (bottom ash 1 and 2%, fly ash 1 and 2%, waste lime+oyster 1 and 2%, Acid mine drainage sludge (AMDS) 10 and 20%, compost 3.4%, non-contaminated natural forest soil, and control). The analysis results of heavy metal concentrations in the soil by Mehlich-3 mehthod, growth and heavy metal concentrations of A. koraiensis showed that waste oyster+lime 1% and compost were more effective than the other amendments for phytostabilization. However, it is needed comprehensive review of factors such as on-site condition, slope covering to reduce soil erosion and vegetation introduction from surround forest for revegetation to apply forest rehabilitation.

나선형패들이 장착된 토양전기분해장치를 이용한 중금속 오염토양 정화에 관한 연구 (A Study on Remediation of Heavy Metal Contaminated Soil using a Soil Electrolysis Apparatus with Spiral Paddle)

  • 이준희;최영익;정진희
    • 한국환경과학회지
    • /
    • 제26권6호
    • /
    • pp.797-802
    • /
    • 2017
  • This study aimed to remove organic matter and heavy metals that could affect the recycling of soils contaminated by heavy metals, by means of electrolysis, carried out simultaneously with the leaching of the soil. To ensure better experimental equipment, a soil electrolysis apparatus, equipped with spiral paddles, was used to agitate the heavy-metal-contaminated soil effectively. The heavy-metal-contaminated soil was electrolyzed by varying the voltage to 5 V(Condition 1), 15 V(Condition 2), and 20 V(Condition 3), under the optimal operating conditions of the electrolysis apparatus, as determined through previous studies. The results showed that the pH of the electrolyte solution and the heavy-metal-contaminated soil, after electrolysis, tended to decrease with an increase in voltage. The highest removal efficiencies of TOC and $COD_{Cr}$ were 18.8% and 29.1%, 38.8% and 4.2%, and 33.3% and 50.0%, under conditions 1, 2 and 3, respectively. Heavy metals such as Cd and As were not detected in this experiment. The removal efficiencies of Cu, Pb and Cr were 4.7%, 8.3% and 2.1%, respectively, under Condition 1, while they were 42.9%, 15.2% and 22.1%, respectively, under Condition 2, and 4.7%, 23.0%, and 24.9%, respectively, under Condition 3. These results suggest that varying the voltage with the soil electrolysis apparatus for removing contaminants for the recycling of heavy-metal-contaminated soil allows the selective removal of contaminants. Therefore, the results of this study can be valuable as basic data for future studies on soil remediation.

Comparison between Siderophores Production by Fungi Isolated from Heavy Metals Polluted and Rhizosphere Soils

  • Hussein, Khalid A.;Joo, Jin Ho
    • 한국토양비료학회지
    • /
    • 제45권5호
    • /
    • pp.798-804
    • /
    • 2012
  • Although siderophores are induced primarily in response to iron deficiency, soil and other ecological factors can affect on this process. This study was to evaluate the production of siderophores by different fungal species isolated from heavy metal contaminated and uncontaminated soils. More than thirty fungal strains were isolated from heavy metal contaminated and rhizosphere uncontaminated soils. Chrome azurol sulfonate (CAS) was used for both quantitative and qualitative evaluation of siderophores production. No significant correlations were observed between the tested variables such as ultraviolet (UV) irradiation method and CAS-agar plate and heavy metal concentration in both soils. The production of siderophores in rhizosphere fungi was higher than those isolated from the contaminated soil; however, the difference was not significant. The siderophore production (%) by fungi isolated from heavy metal contaminated soil using UV irradiation method was positively correlated with the qualitative values using CAS-plate method (P<0.05). Pearson correlation test indicated a positive correlation between the quantitative and qualitative methods of detection for fungi isolated from rhizosphere and also those isolated from heavy metal contaminated soil.

제련소 인근 토양에서 분리한 박테리아 생장에 미치는 중금속 및 pH 영향 (Effects of Heavy Metal and pH on Bacterial Growth Isolated from the Contaminated Smelter Soil)

  • 금미정;윤민호;남인현
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제20권4호
    • /
    • pp.113-121
    • /
    • 2015
  • The contaminated soil at abandoned smelter areas present challenge for remediation, as the degraded materials are typically deficient in nutrients, and rich in toxic heavy metals and metalloids. Bioremediation technique is to isolate new strains of microorganisms and develop successful protocols for reducing metal toxicity with heavy metal tolerant species. The present study collected metal contaminated soil and characterized for pH and EC values, and heavy metal contents. The pH value was 5.80, representing slightly acidic soil, and EC value was 13.47 mS/m. ICP-AES analytical results showed that the collected soil samples were highly contaminated with various heavy metals and metalloids such as lead (183.0 mg/kg), copper (98.6 mg/kg), zinc (91.6 mg/kg), and arsenic (48.1 mg/kg), respectively. In this study, a bacterial strain, Bacillus cereus KM-15, capable of adsorbing the heavy metals was isolated from the contaminated soils by selective enrichment and characterized to apply for the bioremediation. The effects of heavy metal on the growth of the Bacillus cereus KM-15 was determined in liquid cultures. The results showed that 100 mg/L arsenic, lead, and zinc did not affect the growth of KM-15, while the bacterial growth was strongly inhibited by copper at the same concentration. Further, the ability of the bacteria to adsorb heavy metals was evaluated.

전극변환 동전기를 이용한 중금속 오염토양 처리에 관한 연구 (A Study for Remediation of Heavy Metal Contaminated Soil Using Electrokinetics with Swappable Electrode)

  • 최희철;이태진
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제17권5호
    • /
    • pp.75-81
    • /
    • 2012
  • In this study, remediation of heavy metal contaminated soil was attempted by the electrokinetic process equipped with fixed or swappable electrode. Copper was more effectively removed with EDTA than citric acid. Zinc was much more removed than copper with both detergents. When electrokinetic with fixed electrode and detergents were applied to the contaminated soil, copper was removed about 28.52%~35.25% and zinc was removed about 63.44%~71.48%. When electrokinetics with swappable electrode and detergents were applied to the contaminated soil, the pseudo-first order reaction constants was higher about 16~50% than with fixed electrode in the case of zinc. It is conclusive that electrokinetics with swappable electrode could be an effective method for the remediation of heavy metal contaminated soil.

인위적 중금속 오염 토양 제조과정에서 최종 세척과정이 중금속 토양 농도에 미치는 영향 연구 (Effect of Water-Thoroughly-Rinsing in the Artificially Metal-Contaminated Soil Preparation on Final Soil Metal Concentrations)

  • 허정현;정승우
    • 대한환경공학회지
    • /
    • 제33권9호
    • /
    • pp.670-676
    • /
    • 2011
  • 인위적 중금속 오염 토양은 중금속용액과 토양 간 흡착평형, 여과 또는 원심분리, 건조과정을 거쳐 완성되어 토양세척 및 토양독성 실험에 널리 이용되고 있다. 그러나 많은 문헌에서 실험에 사용한 오염토양이 건조과정 이후 충분한 세척을 마친 후 사용되었는지 불분명하다. 본 연구는 중금속 오염 토양 제조 과정에서 최종 세척과정이 중금속 오염 농도에 미치는 영향을 파악하고자 하였다. 3가지 대표적 중금속 오염 토양 제조방법(슬러리 건조법, 평형 후 건조법, 여과 후 건조법)에 의한 중금속(Cd, Pb) 오염 농도 차이를 파악하고 이후 최종 세척과정이 제조 중금속 오염 토양 농도에 미치는 영향을 분석하였다. 중금속용액과 토양을 흡착평형 시킨 후 건조과정만을 거쳐 제조한 오염토양 내 중금속은 이후 단순 세척과정에서 50% 이상 용탈되는 것으로 나타났다. 중금속용액과 토양 간 흡착평형을 거쳐 중금속 오염 토양을 제조한 경우 실험 전 충분한 세척을 거치지 않는다면 이후 토양세척 및 토양독성 실험 결과에 지대한 영향을 미칠 것으로 예상된다. 그러므로 제조오염토양을 이용한 실험에서는 초기 중금속 농도 결정 시점을 중금속 흡착 완료 단계가 아닌, 흡착 후 충분한 세척이 완료된 이후 초기 토양중금속 농도로 결정하는 것이 바람직하다.

Phytoremediation of Heavy-Metal-Contaminated Soil in a Reclaimed Dredging Area Using Alnus Species

  • Lee, Deok-Beom;Nam, Woong;Kwak, Young-Se;Cho, Nam-Hoon;Lee, Sang-Suk
    • Journal of Ecology and Environment
    • /
    • 제32권4호
    • /
    • pp.267-275
    • /
    • 2009
  • To investigate the possible applications of plants to remediate heavy-metal-contaminated soil, a pilot experiment was performed for four years in a reclaimed dredging area using two Alnus species, i.e., Alnus firma and Alnus hirsuta. In a comparison of phytomass of the two species at two different planting densities, the phytomass of Alnus planted at low density was twice as high as that of Alnus planted at high density after four years. The Alnus species showed active acclimation to the heavy-metal-contaminated soil in a reclaimed dredging area. A. hirsuta showed greater accumulation of phytomass than A. firma, indicating that it is the better candidate for the phytoremediation of heavy-metal-contaminated soils. In the pilot system, Alnus plants took metals up from the soil in the following order; Pb > Zn > Cu > Cr > As > Cd. Uptake rates of heavy metals per individual phytomass was higher for Alnus spp. planted at low density than those planted at high density in the pilot system. Low plant density resulted in higher heavy metal uptake per plant, but the total heavy metal concentration was not different for plants planted at low and high density, suggesting that the plant density effect might not be important with regard to total uptake by plants. The quantity of leached heavy metals below ground was far in excess of that taken up by plants, indicating that an alternative measurement is required for the removal of heavy metals that have leached into ground water and deeper soil. We conclude that Alnus species are potential candidates for phytoremediation of heavy-metal- contaminated surface soil in a reclaimed dredging area.

폐 광산 지역 중금속 오염 토양의 석회안정화 적용 시 용출특성 (A Leaching Characteristics on Lime Stabilization of Heavy Metal Contaminated Soil in a Waste Mine Area)

  • 어성욱
    • 한국물환경학회지
    • /
    • 제27권6호
    • /
    • pp.862-867
    • /
    • 2011
  • Pozzolanic-based stabilization/solidification (S/S) is an effective and economic remediation technology to immobilize heavy metals in contaminated soils. In this study, quick lime (CaO) was used to immobilize cadmium and zinc present in waste mine contaminated clayey sand soils. Addition of 5% quicklime to the contaminated soils effectively reduced heavy metal leachability after 2 bed volume operation below the drinking water regulatory limits. Lime addition was revealed to increase the immobilization for all heavy metals in tested pH ranges, so it could be an optimal choice for short-term remediation of heavy metal contaminated soil. The mass balances for these column tests show metal reduction of 92% for Cd and 87% for Zn of total resolved mass in case of 5% lime application.

중금속 오염토양의 복원기술에 대한 고찰 (Review for Remediation Techniques of Contaminated Soil with Heavy Metals)

  • 전충
    • 유기물자원화
    • /
    • 제21권3호
    • /
    • pp.53-63
    • /
    • 2013
  • 중금속에 의한 토양오염문제는 주로 폐 금속광산의 주변 농경지등에서 발생되어져 왔으며 이를 해결하기위한 비용은 수질이나 대기오염에 비해서 훨씬 크며 시간도 많이 소요되어진다고 알려져 있다. 지금까지 중금속으로 오염된 토양을 복원시키기 위한 경제적이고 실용적인 많은 기술들이 개발되어지고 제안되어져 왔다. 그래서 본 연구에서는 최근까지 국내/외에서 개발되어지거나 실용화되어지고 있는 다양한 기술들의 특성 및 장 단점 등에 대하여 고찰하고자 한다.

철도 정비창의 폐기물과 혼합된 중금속 오염토 분리에 관한 연구 (A Study on Isolation of Mixed Heavy Metal-Contaminated Soil and the Waste in Railroad Workshop)

  • 손우화;이승호
    • 한국지반환경공학회 논문집
    • /
    • 제13권12호
    • /
    • pp.59-66
    • /
    • 2012
  • 본 연구에서는 철도정비창 부지 내에 폐기물 및 중금속오염 구간에서 채취한 토양을 대상으로 하였다. 그리고 효율적인 정화공정 설계를 위하여 고농도 오염구간, 저농도 오염구간, 폐주물사 함유 시료를 대상으로 입도분포 및 입도 분포 오염농도 분석을 실시하였다. 하지만 폐콘크리트, 폐목재 등의 건설폐기물, 폐주물사, 소각재 등이 부지 전반에 걸쳐 매립되어 있어 일반토양 오염과 다른 양상을 보이고 있었다. 따라서 일반적인 중금속정화기술로는 오염원이 감소하지 않아 혼합된 폐기물 중에 자성을 띠는 성분을 자력선별을 적용하여 실험한 결과 중금속 오염도는 감소하는 것으로 나타났다.