• Title/Summary/Keyword: Heavy Oil

Search Result 568, Processing Time 0.034 seconds

Quality monitoring of Oriental medicines (유통한약 품질규격 모니터링 연구)

  • Kim, Ho-Kyoung;Chun, Jin-Mi;Lee, A-Young;Lee, Hye-Won;Choi, Ji-Hyun;Jang, Seol;Ko, Byoung-Seob
    • Korean Journal of Oriental Medicine
    • /
    • v.11 no.2
    • /
    • pp.155-165
    • /
    • 2005
  • This study was investigated to determine the quality control of Oriental medicine from stores dealing in Oriental medicine around Seoul and Daegu. We tested total 120 samples that widely used 15 species in herbal medicine (Lycii Fructus, Platycodi Radix, Angelicae Gigantis Radix and 12 others) being collected from Oriental medicine clinic, pharmacy, Oriental pharmacy, Oriental medical hospital and Oriental drug store. We have estimated Oriental medicine by K.P. (Korean Pharmacopoeia), K.H.P(Korean Herbal Pharmacopoeia) and announcement of KFDA. The items of examination were identification, purity, loss on drying, ash, acid insoluble ash, extract content, essential oil content, assay, heavy metal limit, and pesticides residue(BHC, DDT, Aldrin, Endrin, Dieldrin). As a result, 20 samples in total 120 samples were not satisfied with the standard and 7 species in total 15 species were not satisfied with the standard. Identification test, extract content test and pesticides residue(BHC, DDT, Aldrin, Endrin, Dieldrin) were satisfied with the standard. The result will be the basic data for the quality control of Oriental medicine.

  • PDF

ANTI-ANGIOGENIC ACTIVITY OF GENISTEIN IN ORAL CARCINOGENESIS (구강암 발암과정에서 genistein의 혈관형성 억제에 관한 연구)

  • Song, Seung-Il;Kim, Myung-Jin
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.30 no.5
    • /
    • pp.400-405
    • /
    • 2004
  • Angiogenesis inhibition is major concern to cancer chemotherapy and many studies about compound inhibiting angiogenesis is in progression. The long-known preventive effect of plant-based diet on tumorigenesis and other chronic diseases is well documented. Especially soy extract, genistein, is known to be potent angiogenesis inhibitor and prevent development and progression of tumor. In the present study, the effect of angiogenesis on tumorigenesis and chemopreventive effect of genistein by angiogenesis inhibition in hamster buccal pouch oral carcinigenesis model induced by 7.12-dimethylbenza(a)nthracene (DMBA) was studied. Forty eight Syrian Golden young adult hamsters (150-200 gm) were divided into two groups. In control group, 0.5% DMBA in heavy mineral oil was applied to hamster buccal pouch three times a week and in experimental group, 0.1 mg of genistein is administered orally everyday in addition to DMBA application. The animals were euthanized from 2 weeks to 16 weeks with interval of 2 week. H&E staining and immunohistochemistry was performed to evaluate microvessel density by using factor VIII-related antigen and avidin-biotin technique. Microvessels per area was quantified and compared between control and experimental group statistically. The results were as follows. 1. Microvessel density was increased time dependently in both groups and especially the increase was significant from 12 weeks to 16 weeks. 2. When comparing both group, the experimental group showed significantly low microvessel density than control group in 12 weeks (p=0.043), 14 weeks (p=0.050), 16 weeks (p=0.037). Based on these results, it was concluded that genistein influenced oral carcinogenesis by angiogenesis inhibition.

Molecular Identification of Lipase LipA from Pseudomonas protegens Pf-5 and Characterization of Two Whole-Cell Biocatalysts Pf-5 and Top10lipA

  • Zha, Daiming;Xu, Li;Zhang, Houjin;Yan, Yunjun
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.5
    • /
    • pp.619-628
    • /
    • 2014
  • To identify lipase LipA (PFL_0617) from Pseudomonas protegens Pf-5, a lipA deletion mutant (Pf0617) and a complementary strain (Pf0617lipA) were constructed, and their effects on the lipase production were examined. Pf0617 remarkably decreased its whole-cell lipase activity, whereas Pf0617lipA made its whole-cell lipase activity not only restore to wild-type level but also get a further increment. However, the deletion and overexpression of lipA did not affect the extracellular lipase activity. In addition, the unbroken whole cells of these strains were able to catalyze the hydrolysis of membrane-permeable p-nitrophenyl esters, but could not hydrolyze the membrane-impermeable olive oil. These results confirmed that LipA was an intracellular lipase and Pf-5 could also be used as a natural whole-cell biocatalyst. To evaluate the potential of Pf-5 as a whole-cell biocatalyst and separately characterize the whole-cell LipA, the properties of the whole-cell lipases from Pf-5 and Top10lipA were characterized. The results demonstrated that both Pf-5 and Top10lipA exhibited high tolerance to alkaline condition, high temperature, heavy metal ions, surfactants, and organic solvents. Taken together, lipA can realize functional expression in E. coli Top10, and Pf-5 and Top10lipA as whole-cell biocatalysts may have enormous potential in applications.

Computational Simulation of Carburizing and Quenching Processes of a Low Alloy Steel Gear (저합금강 기어의 침탄 및 소입 공정에 대한 전산모사)

  • Lee, Kyung Ho;Han, Jeongho;Kim, Gyeong Su;Yun, Sang Dae;Lee, Young-Kook
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.28 no.6
    • /
    • pp.300-309
    • /
    • 2015
  • The aim of the present study was to predict the variations in microstructure and deformation occurring during gas carburizing and quenching processes of a SCM420H planetary gear in a real production environment using the finite element method (FEM). The motivation for the present study came from the fact that previous FEM simulations have a limitation of the application to the real heat treatment process because they were performed with material properties provided by commercial programs and heat transfer coefficients (HTC) measured from laboratory conditions. Therefore, for the present simulation, many experimentally measured material properties were employed; phase transformation kinetics, thermal expansion coefficients, heat capacity, heat conductivity and HTC. Particularly, the HTCs were obtained by converting the cooling curves measured with a STS304 gear without phase transformations using an oil bath with an agitator in a real heat treatment factory. The FEM simulation was successfully conducted using the aforementioned material properties and HTC, and then the predicted results were well verified with experimental data, such as the cooling rate, microstructure, hardness profile and distortion.

Design of Naphtha Splitter Unit with Petlyuk Distillation Column Using Aspen HYSYS Simulation (Aspen HYSYS를 이용한 나프타 분리공정의 Petlyuk Distillation Column 설계)

  • Lee, Ju-Yeong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.2
    • /
    • pp.21-27
    • /
    • 2018
  • FRN (Full range Naphtha) is distilled from crude oil in a Naphtha Splitter Unit and is separated into the Light Straight Naphtha, Heavy Naphtha, and kerosene according to the boiling point in sequence. This separation is conducted using a series of binary-like columns. In this separation method, the energy consumed in the reboiler is used to separate the heaviest components and most of this energy is discarded as vapor condensation in the overhead cooler. In this study, the first two columns of the separation process are replaced with the Petlyuk column. A structural design was exercised by a stage to stage computation with an ideal tray efficiency in the equilibrium condition. Compared to the performance of a conventional system of 3-column model, the design outcome indicates that the procedure is simple and efficient because the composition of the liquid component in the column tray was designed to be similar to the equilibrium distillation curve. An analysis of the performance of the new process indicated an energy saving of 12.3% under same total number of trays and with a saving of the initial investment cost.

A Systems Engineering Approach to FEED Work Process Development for Refinery Plant (시스템 엔지니어링 접근 방법에 의한 정유 플랜트의 FEED 수행 업무 프로세스 개발)

  • Kim, Sun Young;Cha, Jae-Min;Kim, Junpil;Suh, Suk-Hwan;Sur, Hwal Won
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.10 no.1
    • /
    • pp.1-15
    • /
    • 2014
  • Refinery plant producing petroleum products from crude oil has significantly contributed to the creation of the national interests as a leading engineering industries. However, domestic Engineering Procurement Construction (EPC) companies are facing heavy competition for orders. Domestic EPC companies as EPC contractors are faced with some problems such as undertaking responsibility for FEED packages produced by other FEED companies. But domestic EPC contractors are unfamiliar to development and validation of FEED packages. It causes poor profitability and lower competitiveness of domestic companies. It is necessary for domestic companies to have capability to perform FEED activities in order to overcome these limitations instead of focusing on EPC phase after FEED phase. The systematic procedure is needed to perform the FEED activities, however, there are present difficulties on it due to the lack of experience in FEED packages development which require various engineering knowledge of chemical process, mechanics, electrics, instrumentation, civil engineering. This study has applied systems engineering method which is multi-disciplinary approach to derive and verify the solution to meet the customer's needs when the complex system is developed to task execution process development of FEED activities for refinery plant. The problems that may occur in the future were identified in advance by taking into account the various stakeholders and system context through the application of systems engineering. It helps to develop the task execution process systematically. The developed task execution process of FEED activities is planned to make effectiveness verified by engineering professionals experienced in FEED and continually enhance this process by field application.

Effect of Changing the Intake Air Temperature in a Marine Diesel Engine on the Characteristics of Exhaust Gas Emission (선박 디젤기관의 배기배출물 특성이 흡기 온도변화에 미치는 영향)

  • Cho, Sang-Gon
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.6
    • /
    • pp.788-794
    • /
    • 2019
  • Recently, global climate change caused by greenhouse gases has emerged as a significant air-environmental problem. Technical innovation in response to this phenomenon is ongoing, with an emphasis on the environmental impacts of unusually high temperatures and unexpected heavy rainfall. In this study, we investigated the effects of temperature change on air pollution for a concomitant rapid temperature increase. The test conditions include loading from 0 % to 100 % at 1400 rpm, 1600 rpm, and 1800 rpm for a change in the intake air temperature of a marine diesel engine from 20 ℃ to 50 ℃. The experimental results revealed that CO and HC decreased slightly, whereas the brake specific fuel consumption, NOx, and PM increased slightly when the intake air temperature changed. In addition, it was determined that the combustion temperature did not change significantly.

바이오매스 구성성분 중 리그닌의 전환에 관한 연구

  • Yun, Seong-Uk;Lee, Byeong-Hak
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.11a
    • /
    • pp.733-736
    • /
    • 2000
  • Lignin is usable as fuels and heavy oil additives if depolymerized to monomer unit, because the chemical structures are similar to high octane materials found in gasoline. In this study, the solvent-phase thermal cracking(solvolysis) of lignin was performed at the various temperature and time in a laboratory tubular reactor. Conversion yield was measured for the properties of thermal cracking and liquefaction reaction of lignin. Highest conversion yield when acetone was used as thermal cracking solvent was 55.5% at $350^{\circ}C$, 50minutes and highest tar generation were $260{\sim}350mg/g\;{\cdot}\;lignin$ at $250^{\circ}C$, and highest conversion yield after tar removal was 76.88% at $300^{\circ}C$, 30minutes. Conversion yield, product compositions and amounts were determined by tar degradation yield.

  • PDF

Turbidity Removal of Kaolin in an Electrocoagulation/Flotation Process Using a Mesh-type Aluminum Electrode (메시형 알루미늄 전극을 이용한 전기응집/부상 공정에서 Kaoline의 탁도 제거)

  • Zheng, Chang;Kim, Dong-Seog;Park, Young-Seek
    • Journal of Environmental Science International
    • /
    • v.26 no.5
    • /
    • pp.563-572
    • /
    • 2017
  • The Electrocoagulation-Flotation (ECF) process has great potential in wastewater treatment. ECF technology is effective in the removal of colloidal particles, oil-water emulsion, organic pollutants such as microalgae, and heavy metals. Numerous studies have been conducted on ECF; however, many of them used a conventional plate-type aluminum anode. In this study, we determined the effect of changing operational parameters such as power supply time, applied current, NaCl concentration, and pH on the turbidity removal efficiency of kaoline. We also determined the effects of different electrolyte types (NaCl, $MgSO_4$, $CaCl_2$, $Na_2SO_4$, and tap water), as well as the differences caused by using a plate-type and mesh-type aluminum anode, on the turbidity removal efficiency. The results showed that the optimal values of ECF time, applied current, NaCl concentration, and pH were 5 min, 0.35 A, 0.4 g/L NaCl in distilled water, and pH 7, respectively. The results also revealed that the turbidity removal efficiency of kaoline in different electrolytes decreased in the following sequence, given the same conductivity: tap water > $CaCl_2$ > $MgSO_4$ > NaCl > $Na_2SO_4$. The turbidity removal efficiency of the mesh-type aluminum anode was significantly greater than the plate-type aluminum anode.

Calculation of the Absorption Coefficient and Weighting Factor Expressing the Total Emissivity of Flame (화염의 총괄폭사 계수를 나타내는 급수계수 및 가중치의 계산)

  • 하만영;허병기
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.10 no.1
    • /
    • pp.121-130
    • /
    • 1986
  • Using the sbsorption coefficients and the weighting factors of the gray gas, the total emissivities of C $O_{2}$- $H_{2}$O and C $O_{2}$- $H_{2}$O- transient species-soot gas mixtures can be expressed by the following equation, [a numerical formula] Where, $a_{i}$ and $K_{i}$ represent the weighting factor and the absorption coeffient of i-gray gas respectively; L is the pathlength of the gas. This equation is widely used for the analyses of the radiation heat transfer in the combustors of internal combustion engines and in the furnace of external combustion engines. In this work, a simple calculation model of the weighting factor and the absorption coeffient of the above equation was developed. The weighting factors and the absorption coefficients of combustion products were calculated by applying the model to various kinds of fossil fuels such as coal and heavy oil. Then, the computed total emissivities for each fuel and pathlength were compared with measured and calculated values which have been already published in the literatures. The followings were the results obtained through the comparisons between the calculated emissivites and the published values; the developed model for the calculations of the weighting factor and the absorption coefficient of C $O_{2}$- $H_{2}$O and C $O_{2}$- $H_{2}$O- transient species-soot gas mixtures could be applied over the wide ranges of the temperature and the pathlength; the errors between the total emissivities calculted and the values published were maximum 10%, and average 1%, respectively.