• 제목/요약/키워드: Heavy Metal Stabilization

검색결과 123건 처리시간 0.027초

석회석을 활용한 광미와 폐석의 Cd, Cu, Pb 및 Zn의 제거

  • 지한구;정명채;정문영;최연왕;이문현;이재영
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2005년도 총회 및 춘계학술발표회
    • /
    • pp.20-23
    • /
    • 2005
  • The objective of this study is to examine a stabilized efficiency of heavy metals including Cd, Cu, Pb and Zn using slaked lime. Tailings from the Janggun Pb-Zn mine, the second Yeonhwa Pb-Zn mine, the Jisi Au-Ag mine and the Sangdong W mine were sampled and measured heavy metal concentrations contents using AAS as various extraction methods. During 156 hours, column test were undertaken to evaluate the possibility of stabilization by slaked lime. The result shows that $Ca(OH)_2$ has a good efficiency in heavy metal stabilization, especially at the Jisi mine with stabilized efficiencies of 97%(Cd), 99%(Cu), 86%(Pb) and 99%(Zn), respectively.

  • PDF

비소 및 중금속의 식물체 전이감소를 위한 철 나노 입자가 담지된 바이오차의 농경지 토양 안정화제 적용성 평가 (Stabilization of As and Heavy Metals in Farmland Soil using Iron Nanoparticles Impregnated Biochar)

  • 고일하;김정은;박소영;최유림;김동수;문덕현;장윤영
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제27권6호
    • /
    • pp.1-10
    • /
    • 2022
  • This study assessed the feasibility of iron oxide nanoparticles impregnated with biochar (INPBC), derived from woody biomass, as a stabilizing agent for the stabilization of farmland soil in the vicinity of an abandoned mine through pot experiments with 28 days of lettuce growth. The lettuce grown in the INPBC amended soils increased by more than 100% and the concentrations of inorganic elements (Cu, Ni, Zn) decreased by more than 40%. As, Cd and Pb were not transferred properly from the soils to the lettuce biomass. The bioavailability of arsenic and heavy metals in the INPBC amended soils were decreased by 26%~50%. It seems that the major mechanisms of stabilization were arsenic adsorption on iron oxides, heavy metal precipitation by soil pH increasing and heavy metal adsorption on organic matter. These results revealed that the lower bioavailability of the inorganic pollutants in the soils stabilized using INPBC induced lower transfer to the lettuce. Thus, INPBC could be used as an amendment material for the stabilization of farmland soils contaminated by arsenic and heavy metals. However, a pre-review of the chemical properties of the amended soil must be performed prior to applying INPBC in farmland soil because the concentration of the nutrients in the soil such as available phosphates and exchangeable cations (Ca, Mg, K) could be decreased due to adsorption on the surface of the iron oxides and organic matter.

바이오매스 회분 혼합에 따른 토양 내 중금속 (Ni, Cr) 안정화 (Stabilization of Heavy Metal (Ni, Cr) in Soil Amended with Biomass Ash)

  • 강구;박성직;홍성구
    • 한국농공학회논문집
    • /
    • 제58권3호
    • /
    • pp.39-46
    • /
    • 2016
  • This study investigated the potential use and the effectiveness of biomass ashes for the stabilization of heavy metals in soil through a series of experiments. The ashes used for the experiments were obtained from the gasification of biomass including miscanthus and woodchips. The amounts of nickel and chromium released from the soil and ash mixture were analyzed. Chemical analysis showed that the ash contained unburned carbon as well as silica and alkali metals. Miscanthus ashes have C (83.400 %) > Si (9.040 %) > K (3.180 %) > Ca (1.800 %), and woodchip ashes have C (93.800 %) > Ca (2.220 %) > Fe (1.370 %) > K (1.200 %). KSLT and TCLP test results implied that the heavy metal concentrations were below the environmental standards and would not impose the risks. The results also showed that Ni releases were more limited as more ashes were mixed with the soil due to the increases in exchangeable, carbonate, and oxide nikels. Both miscanthus and woodchip ahses were effective in stabilizing nickel and chromium through mixing with the soil. It could be seen that ashes produced from biomass gasification can be used to stabilize the heavy metals in soils.

양이온교환용량이 다른 제올라이트 처리에 따른 밭토양 내 중금속 안정화 평가 (Application of Zeolite with Different Cation Exchange Capacity for the Stabilization of Heavy Metals in Upland Soil)

  • 구본운;김문주;박성직
    • 한국농공학회논문집
    • /
    • 제59권5호
    • /
    • pp.41-49
    • /
    • 2017
  • This study was aimed to investigate the influence of cation exchange capacity (CEC) and application amounts of zeolite on the stabilization of heavy metals (As, Ni, Pb, and Zn) in upland soils. The upland soils were sampled from field near mines located in Gyeonggi Province. The CEC of zeolite was treated at three different levels, ie, low, medium, and high, while zeolite was amended with soils at the ratio of 0.1 % and 0.5 % as to soil weight. A sequential extraction was performed for the soil sampled at 1, 2 4, and 8 week after zeolite was added to the soil. The concentrations of Pb and Zn appeared to be high in the sampled soils. The mobility of heavy metals obtained from sequential experiments was as follows: Pb > Zn > Ni >As. Addition of zeolite to contaminated soils effectively reduced exchangeable and carbonate fractions but increased organic and residual fraction, indicating that zeolite is effective for immobilizing heavy metals in soils. The influence of incubation time on the metal stabilization was rather pronounced as compared to the application amount and CEC of zeolite.

인산염 비료 및 레드머드를 이용한 중금속 오염 광미의 안정화 (Stabilization of Heavy Metal-Contaminated Mine Tailings Using Phosphate Fertilizers and Red Mud)

  • 강신현;안준영;황경엽;서정윤;김재곤;송호철;임수빈;황인성
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제16권5호
    • /
    • pp.31-41
    • /
    • 2011
  • The objectives of this study were to investigate the efficiencies of the stabilizers such as mono-potassium phosphate (MKP), phosphate fertilizer and red mud in treating the mine tailings contaminated with heavy metals and to characterize the changes in fractionations of the heavy metals during the stabilization. The TCLP results showed that the stabilization efficiencies of Cd, Pb and Zn increased with the increase in the stabilizer dosage and the reaction times. MKP showed the highest efficiencies for the heavy metals stabilization among the stabilizers tested. When the mine tailings were amended with MKP, the TCLP concentrations of Cd, Pb and Zn were reduced by 79~97%, 61~84%, and 89~99%, respectively. When the composite stabilizers, MKP/phosphate fertilizer or MKP/red mud, were used, the stabilization efficiencies were lower than when MKP was used as a single stabilizer. The sequential extraction results showed that carbonates fraction of Cd and Zn increased generally. Especially, when red mud was used, carbonates fraction of Cd and Zn increased 5 and 18 times, respectively. In the case of Pb, the treatment with MKP increased residual fraction by 10 times. The results showed that MKP was the most effective in stabilizing the heavy metals (Cd, Pb and Zn) to improve the efficacy of the composite binders.

중금속 오염토양에서 두과 녹비작물의 단기재배 및 환원이 토양 화학성에 미치는 영향 (The Effects of the Short-term Cultivation and Incorporation of Legume Green Manures on the Chemical Properties of Soil Contaminated with Heavy Metals)

  • 김민석;민현기;이병주;김정규;이상환
    • 한국환경농학회지
    • /
    • 제33권3호
    • /
    • pp.155-163
    • /
    • 2014
  • BACKGROUND: Recent studies for heavy metal stabilization in soil were mainly focused on finding out new materials and its efficiency. But, such a stabilization method can cause disturbance to soil, leading improper environment for agriculture. The object of this study was to demonstrate the effect of the incorporation of green manure crops on heavy metal-contaminated soil. METHODS AND RESULTS: Soil contaminated with heavy metals was collected from the agricultural soils affected by the abandoned mine. Lime stone was selected and treated to contaminated soil. Three kinds of legume green manure crops; Alfalfa (Medicago sativa), Hairy vetch (Vicia villosa), Red clover (Trifolium pratense) were subsequently cultivated in greenhouse condition. It was found that lime stone increased soil pH and decreased the amount of heavy metal absorption by green manure. The application of green manure residues on soil increased soil pH and inorganic nitrogen. CONCLUSION: The C/N ratio of three green manures was low, indicating fast decomposition rate, resulting in nitrogen supplement, consequently. Considering the point that the soil was used for agricultural purpose, it was recommended that hairy vetch and red clover were preferred. Nevertheless, the heavy metal availability was also increased. Thus, it seemed that further study was needed to confirm that how long maintain a phenomenon.

중금속 오염 농경지 토양의 복원을 위한 토량개량법의 효과 비교 (A Comparison on the Effect of Soil Improvement Methods for the Remediation of Heavy Metal contaminated Farm Land Soil near Abandoned Mines)

  • 유찬;윤성욱;강신일;진혜근
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2010년도 춘계 학술발표회
    • /
    • pp.984-999
    • /
    • 2010
  • A long-term field demonstration experiment of selected stabilization method to reduce the heavy metal mobility in farmland soil contaminated by heavy metals around abandoned mine site was conducted. Field demonstration experiments were established on the contaminated farmland with the wooden plate(thickness=1cm) which dimension were width=200cm, Length=200cm, height=80cm and filled with treated soil, which was mixed with lime stone and steel refining slag except on control plot. Soil samples in the plots were collected and analyzed during the experiment period(2008. 2~2008. 8) after the installation of the plots. Field demonstration experiments results showed that the application ratio of lime stone 5% was effective for immobilizing heavy metal components in contaminated farmland soil.

  • PDF

폐자원을 이용한 사격장 토양내 중금속(Pb, Cu) 안정화 처리 (Application of Waste Resources for the Stabilization of Heavy Metals (Pb, Cu) in Firing Range Soils)

  • 이근영;문덕현;김경웅;정경훈;김태성;김지형;문경란;최수빈
    • 대한환경공학회지
    • /
    • 제33권2호
    • /
    • pp.71-76
    • /
    • 2011
  • 본 연구는 Pb와 Cu로 오염된 사격장 토양을 대상으로 폐자원을 가공하여 만든 안정화제를 이용하여 안정화 처리를 수행하였다. 안정화제는 폐굴껍질을 소성하여 생석회로 가공한 Calcined oyster shells (COS)와 폐소뼈를 가공한 Waste cow bones (WCB)로 오염토 함량대비 각각 5%와 3%를 사용하여, 28일간 습윤양생한 후 각종 용출시험법을 통해 효율성을 평가 하였다. 증류수 용출 및 SPLP에서는 뚜렷한 안정화 효율이 관찰되지 않았는데, 이는 중성 또는 약산성 환경에서는 중금속의 용출량 자체가 많지 않기 때문으로 판단된다. 반면, TCLP 및 0.1 N HCl을 이용한 용출실험에서는 안정화 처리를 한 토양의 경우 중금속의 용출량이 확연하게 감소한 것을 확인할 수 있었다. 특히, 0.1 N HCl 용출 결과에서 Pb 99.9%, Cu 83.9%의 매우 높은 용출량 저감효과를 보였고, 이는 비교적 강산성 용출환경에서는 중금속의 안정화 효과가 크게 나타남을 의미한다. 연속추출 결과를 통해 Pb와 Cu 간에 안정화 경향성의 차이는 Pb가 불용성 물질로의 변환과 안정화 효율이 더 탁월한 것으로 판단된다. 본 연구는 폐자원을 이용한 안정화제가 오염토양 처리에 활용 가능함을 증명하고 있고, 또한 폐기물로 취급되는 폐자원의 재사용 방안을 제시한다는 점에서도 큰 의미를 갖는다.

소각재에서의 용출억제제를 이용한 중금속 안정화에 관한 연구 (Study on the heavy metal stabilization by dosing of chelate on the bottom ash)

  • 장현종;김성중
    • 유기물자원화
    • /
    • 제17권4호
    • /
    • pp.81-90
    • /
    • 2009
  • 현재 가동 중인 생활폐기물 소각시설이 약 35여개소 정도 있으며, 폐기물관리 정책에 따라 폐기물을 효율적으로 재활용하고 발생을 최소화하기 위하여 폐기물 발생억제, 감량, 재이용, 재활용, 에너지 회수를 포괄하는 개념으로 소각을 통해 최종처리되는 폐기물을 최소화하려는 정책이다. 하지만, 소각 후에 발생하는 소각재에서 일부 항목(Cu, Pb)의 중금속용출이 기준치를 초과하는 것으로 나타나 커다란 사회적 문제가 제기되어 이에 대한 대책방안을 모색하게 되었다. 소각재에 포함된 중금속인 유해물질을 용출 확산되지 않도록 소각재에 대한 화학약품처리 방식인 중금속 용출억제제를 혼합하여 용출되지 않도톡 안정화시설을 개발하여 2차 환경오염의 확산억제외 바닥재 함유 중금속의 안정화 효율을 증대된 것으로 조사되었다.

  • PDF