• Title/Summary/Keyword: Heavy Metal Concentration

Search Result 1,093, Processing Time 0.033 seconds

Toxic Effects of Heavy Metal (Pb, Cr, As) on the Hatching Rates of Fertilized Eggs in the Olive Flounder (Paralichthys olivaceus) (중금속(Pb, Cr, As)이 넙치(Paralichthys olivaceus) 수정란 부화율에 미치는 독성 영향)

  • Park, Jong-Soo;Park, Seung-Yoon;Hwang, Un-Ki
    • Korean Journal of Environmental Biology
    • /
    • v.30 no.3
    • /
    • pp.238-244
    • /
    • 2012
  • Toxic effects of heavy metal (Pb, Cr, As) were examined by the hatching rates of fertilized eggs in the oliver flounder, Paralichthys olivaceus. Eggs were exposed to Pb, Cr, As (0, 10, 100, 500, 1,000, 2,500, 5,000 ppb) and then normal hatching rates were investigated after 48 h. The normal hatching rates in the control condition (not including heavy metal) were greater than 80%, but suddenly decreased with increasing of heavy metal concentrations. Pb, Cr and As reduced the normal hatching rates in concentration-dependent way and a significant reduction occurred at concentration grater than 100, 100, 500 ppb, respectively. The ranking of heavy metal toxicity was Cr>As>Pb, with $EC_{50}$ values of 415, 518 and 1,029 ppb, respectively. The no-observed-effect-concentration (NOEC) and lowest-observed-effect-concentration (LOEC) show each 100 bbp and 500 ppb of normal hatching rates in exposed to Pb and As. The NOEC and LOEC of normal hatching rates in Cr were 10 ppb and 100 ppb, respectively. From these results, the normal hatching rates of P. olivaceus have toxic effect at greater than the 100 ppb concentrations in Pb, As and the 10 ppb concentrations in Cr in natural ecosystems. These results suggest that biological assay using the normal hatching rates of P. olivaceus are very useful test method for the toxicity assessment of a toxic substance as heavy metal in marine ecosystems.

Removal of Heavy Metals by Cladophora sp. in Batch Culture: The Effect of Wet-mixed Solidified Soil (loess) on Bioremoval Capacities

  • Kim, Jin-Hee;Lee, Kyung-Lak;Kim, Sook-Chan;Kim, Han-Soon
    • Korean Journal of Ecology and Environment
    • /
    • v.40 no.4
    • /
    • pp.537-545
    • /
    • 2007
  • The heavy metal removal capacity of filamentous green alga Cladophora sp. cultured together with wet-mixed solidified soil (loess) was tested. A Cladophora sp. was cultured for 5d, with added Chu No. 10 medium, in stream water contaminated by high concentration of heavy metals from a closed mine effluent. Heavy metal ion concentrations of the medium and in algal tissue were measured every day during the experiment. Dissolved metals (Al, Cd, Cu, Fe, Mn, Zn) in medium were rapidly removed (over 90% elimination) within 1-2d when alga and loess were added. Dissolved heavy metals dropped by only 10% when algae were cultured without loess. The Cladophora sp. accumulated much more heavy metals when cultured with loess than when the alga was cultured alone. Cladophora sp. exhibited a maximum uptake capacity for Al ($17,000{\mu}g^{-1}$ algal dry weight). The metal bioremoval capacities of the algae were in the order Al, Fe, Cu, Mn, Zn and Cd. The heavy metal removal capacity of Cladophora sp. showed significant increases when wet-mixed solidified soil was added to culture media.

Characteristics of heavy metal concentrations in urban stormwater runoff, Daejeon, Korea (도시 유역 강우유출수 내 중금속 농도의 변화 특성에 관한 연구)

  • Yu, Eunjin;Seo, Dongil
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.10
    • /
    • pp.917-927
    • /
    • 2018
  • Seven heavy metal concentrations (As, Cd, Cr, Cu, Ni, Pb, Zn) were continuously analyzed for twenty rainfall events in 2017~2018 in an urban basin. The overall and dynamic correlations between runoff characteristics and heavy metal concentrations were examined. The peak metal concentration generally appeared in the initial runoff but found to be delayed when the rainfall intensity was low. The rainfall duration had no relationship with either heavy metal concentrations or their total mass. Dynamics of heavy metal mass (load), with the exception of Cu and Zn, showed strong correlation with the 30 minute rainfall intensity (0.60~0.88) and runoff volume (0.74~0.89). While event mean concentration (EMC) showed positive correlation (0.54~0.73) with antecedent dry days (ADD), no significant relationship was found between runoff volume and pollutant concentration. This implies that the pollutants built up on the surface during dry days are washed off even with low rainfall energy. The dynamics of heavy metal and TSS concentrations showed good correlation (0.68~0.87). This result shows that the metals are transported along with solid particles as adsorbate in surface runoff. Regular street sweeping will reduce significant amount of heavy metal loads in urban surface runoff.

Phytoremediation of Heavy-Metal-Contaminated Soil in a Reclaimed Dredging Area Using Alnus Species

  • Lee, Deok-Beom;Nam, Woong;Kwak, Young-Se;Cho, Nam-Hoon;Lee, Sang-Suk
    • Journal of Ecology and Environment
    • /
    • v.32 no.4
    • /
    • pp.267-275
    • /
    • 2009
  • To investigate the possible applications of plants to remediate heavy-metal-contaminated soil, a pilot experiment was performed for four years in a reclaimed dredging area using two Alnus species, i.e., Alnus firma and Alnus hirsuta. In a comparison of phytomass of the two species at two different planting densities, the phytomass of Alnus planted at low density was twice as high as that of Alnus planted at high density after four years. The Alnus species showed active acclimation to the heavy-metal-contaminated soil in a reclaimed dredging area. A. hirsuta showed greater accumulation of phytomass than A. firma, indicating that it is the better candidate for the phytoremediation of heavy-metal-contaminated soils. In the pilot system, Alnus plants took metals up from the soil in the following order; Pb > Zn > Cu > Cr > As > Cd. Uptake rates of heavy metals per individual phytomass was higher for Alnus spp. planted at low density than those planted at high density in the pilot system. Low plant density resulted in higher heavy metal uptake per plant, but the total heavy metal concentration was not different for plants planted at low and high density, suggesting that the plant density effect might not be important with regard to total uptake by plants. The quantity of leached heavy metals below ground was far in excess of that taken up by plants, indicating that an alternative measurement is required for the removal of heavy metals that have leached into ground water and deeper soil. We conclude that Alnus species are potential candidates for phytoremediation of heavy-metal- contaminated surface soil in a reclaimed dredging area.

Impact of Reclaimed Wastewater Irrigation on Heavy Metal Contamination in Soil and Vegetables (하수처리수의 농업용수 재이용이 토양 및 작물의 중금속 함량에 미치는 영향 분석)

  • Kim, Hak-Kwan;Jang, Tae-Il;Lee, Eun-Jung;Park, Seung-Woo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2008.05a
    • /
    • pp.827-831
    • /
    • 2008
  • In this study, the effects of reclaimed wastewater irrigation on the concentration of heavy metals such as lead, zinc, cadmium, and copper in soil and vegetables were investigated by monitoring an experimental area irrigated with reclaimed wastewater. Three treatments and three replications on $10{\times}2$-m plots were installed and heavy metal concentrations in soil and vegetables were monitored from 2005 to 2007. The treatments applied in this study were groundwater irrigation (control treatment), wastewater irrigation, and irrigation with filtered reclaimed wastewater treated with ultraviolet light. The monitored results showed that the concentrations of Cu, Cd, and Pb in soil during the experimental period were lower than initial soil levels before irrigation, whereas Zn increased in all treatment plots. However, the ranges of Zn, Cu, Cd and Pb in soil were below the soil pollution standards in the Republic of Korea. Heavy metal concentrations in vegetables showed insignificant variations for all treatments.

  • PDF

Evaluation of Heavy Metal Pollution in Soil on the Playgrounds for Children in I area (I시 어린이 놀이터의 토양 중 중금속 오염에 관한 연구)

  • 이충대;이윤진;조남영
    • Journal of Environmental Health Sciences
    • /
    • v.27 no.3
    • /
    • pp.57-62
    • /
    • 2001
  • The study was conducted to measure the heavy metal pollution of soils at the playground for children and to investigate the characteristics of heavy metals distribution I city. The studied area was divided into two: the residential area and the industrial area. The samples of the sands and soils were collected from both areas. The results were obtained as follows. All average concentration of 6 different heavy metals was found to be lower than the standard of soil pollution. Zn, Pb and cu concentrations were higher than other species of heavy metals. The contents of heavy metals in the soil were higher than the sands. The average contents of Zn, Pb, Cu, As, Hg and Cd in soil were 38.36, 9.53, 7.31, 0.03, 0.18 and 0.09 mg/kg respectively. Comparing with the residential area, heavy metal concentrations of the industrial area were 4.60, 1.49, 2.60 and 4.29 times for Zn, Pb, Hg and Cd in soils, respectively.

  • PDF

Relationship between the Organic Content, Heavy Metal Concentration and Anaerobic Respiration Bacteria in the Sediments of Shiwha-ho (시화호 저니(Sediment)에서의 유기물 및 중금속 농도와 혐기성호흡세균과의 상관관계)

  • 현문식;장인섭;박형수;김병홍;김형주;이홍금;권개경
    • Microbiology and Biotechnology Letters
    • /
    • v.27 no.3
    • /
    • pp.252-259
    • /
    • 1999
  • Anoxic sediments collected from Shiwha-ho area were used to find the relationship between the heavy-metal, organic content and anaerobic respiration bacteria by most probable number (MPN) method. Analysis of the sediments showed that COD content was higher in the sediments collected from Ansan-cheon and Shiwha-ho than those collected from sea area nearby. Particularly noticeable was the fact that heavy metal concentration was much higher in the sediments of Shiwha-ho area contaminated by heavy-metal, although they were rich in electron donor and electron acceptor for Fe(III)-reducing bacteria using lactate as an electron donor was in the range of 1.1$\times$106-4.6$\times$107MPNs/ml in the sediments collected from the sea-side of the lake, which were lower in heavy-methal concentration and higher in Fe-Mn content than those from other region. The number of Fe(III)-reducing bacteria using acetate as an electron donor was in the rang eof 4.3$\times$102-8.1$\times$105MPNs/ml in the same sediments. Chromate-reducing bacteria were more populated(4.6$\times$104-8.1$\times$105MPNs/ml) in the sediments contaminated by heavy metals. The number of sulfate-reducing bacteria wee counted in the sediments collected from the more contaminate inner-side than those from the sea-side of the lake.

  • PDF

Transition Characteristics and Risk Assessment of Heavy Metal(loid)s in Barley (Hordeum vulgare L.) Grown at the Major Producing Districts in Korea

  • Kim, Da-Young;Kim, Won-Il;Yoo, Ji-Hyock;Kwon, Oh-Kyung;Cho, Il Kyu
    • Korean Journal of Environmental Agriculture
    • /
    • v.40 no.1
    • /
    • pp.60-66
    • /
    • 2021
  • BACKGROUND: The concern over heavy metal(loid)s in arable land and agricultural products increases for public health in recent years. This study aims to identify transition characteristics of heavy metal(loid)s and to assess dietary risk in barley grown at the major producing districts in Korea. METHODS AND RESULTS: The soil and barley samples were collected from 38 locations around the major producing districts at Jeollabuk-do in Korea for the propose of examining the concentrations of heavy metal(loid)s. The 34 barley samples were separately purchased on the market for the same survey. The average concentration and range of arsenic (As), cadmium (Cd) and lead (Pb) in barley grown at the major producing districts in Korea were 0.037 (0.016-0.094), 0.028 (0.004-0.083) and 0.137 (0.107-0.212) mg kg-1, respectively. Currently, the maximum allowable level for barley Pb is set at 0.2 mg kg-1 in Korea, and the monitoring results suggested that some samples exceeded the maximum allowable level and required appropriate farming management. Bio-concentration factor values by heavy metal(loid)s in barley were high at Cd, copper (Cu) and zinc (Zn), similar to other crops, while As and Pb were low, indicating low transferability. CONCLUSION: Human exposure to As, Cd and Pb through dietary intake of barley might not cause adverse health effects due to relatively low concentrations, although the Pb in some barley was detected higher than the maximum allowable level. Further study on uptake and accumulation mechanism of Pb by barley might be required to assess the human health risk associated with soil contamination.

A Study on the heavy metal contents in the soils and vegetables (중금속에 의한 토양오염과 그 작물함량에 관한 연구)

  • 김명미;고영수
    • Journal of Food Hygiene and Safety
    • /
    • v.1 no.1
    • /
    • pp.51-56
    • /
    • 1986
  • In the particular area the heavy metal concentrations in the soil were determined and compared to the contents in vegetables which were grown on the soil. Simultaneously the degree of contamination was examined. Samples were collected from Chinese cabbage, radish and Altari-mu, together with the soil on which the three kinds of vegetables have grown. The sites of samples collection were Jinguan-sa(non-polluted area) and Sangaedong(polluted area). The contents of cadimium, copper, lead and zinc were determined by means of atomic absorption spectro-photometer. The results obtained were as follows; 1. In soils, the average contents of heavy metal in Jinguan-sa area (Cd; 0.15ppm, Cu; 0.15ppm, Zn; 11.5ppm) were lower than those in sangye-dong(Cd; 0.26ppm, Cu; 13.0ppm, Zn; 17.1ppm). 2. In vegetables, the average have metal contents in Jinguan-sa were cadmium; 0.11ppm, copper; 5.29ppm, zinc; 18.75ppm and the average contents in Sangye-dong were cadmium; 0.16ppm, copper; 6.64ppm, lead; 0.14ppm, zinc; 15.01ppm. 3. The contents of lead showed zero ppm in Jinguan-sa area(soil and vegetables). In vegetables difference in concentration of heavy metals was not observed between reclaimed area and non reclaimed area. Statistical analysis showed that no correlation in the heavy metal concentrations between those in soils and in vegetables.

  • PDF

Source Identification of Heavy Metal Contamination at an Industrial Complex Established Using Construction Wastes (건설폐기물을 성토재로 사용한 산업단지에서의 중금속 오염 원인 규명)

  • JOO, Gwonho;KIM, Kibeum;NAM, Kyoungphile;JUNG, Jae-Woong;Moon, Seheum;CHOI, Yongju
    • Journal of Soil and Groundwater Environment
    • /
    • v.23 no.1
    • /
    • pp.54-62
    • /
    • 2018
  • This paper is aimed at source tracking of soil heavy metal contamination at a site established by reusing construction wastes. The soil heavy metal concentration at the study site peaked at a depth range of 5-10 m. Column studies were conducted to investigate the possibility of the contamination scenario of infiltration of stormwater carrying heavy metals of ground origin followed by selective heavy metal accumulation at the 5-10 m depth range. Almost all amount of lead, zinc, cadmium, and nickel introduced to the columns each packed with 0-5 m or 5-10 m field soil were accumulated in the column. The very poor heavy metal mobility in spite of the weak association of the heavy metals with the soil (characterized by a sequential extraction procedure) can be attributed to the high pH (10-11) of the construction wastes. From the results, the heavy metal contamination of the subsurface soil by an external heavy metal source was determined to be very unlikely at the study site. The column study applied in the current study is expected to be a useful methodology to present direct evidence of the contaminant source tracking at soil contamination sites.