Relationship between the Organic Content, Heavy Metal Concentration and Anaerobic Respiration Bacteria in the Sediments of Shiwha-ho

시화호 저니(Sediment)에서의 유기물 및 중금속 농도와 혐기성호흡세균과의 상관관계

  • 현문식 (한국과학기술원 수질환경연구센터) ;
  • 장인섭 (한국과학기술원 수질환경연구센터) ;
  • 박형수 (한국과학기술원 수질환경연구센터) ;
  • 김병홍 (한국과학기술원 수질환경연구센터) ;
  • 김형주 (한국과학기술원 수질환경연구센터) ;
  • 이홍금 (한국해양연구소 미생물연구실) ;
  • 권개경 (한국해양연구소 미생물연구실)
  • Published : 1999.06.01

Abstract

Anoxic sediments collected from Shiwha-ho area were used to find the relationship between the heavy-metal, organic content and anaerobic respiration bacteria by most probable number (MPN) method. Analysis of the sediments showed that COD content was higher in the sediments collected from Ansan-cheon and Shiwha-ho than those collected from sea area nearby. Particularly noticeable was the fact that heavy metal concentration was much higher in the sediments of Shiwha-ho area contaminated by heavy-metal, although they were rich in electron donor and electron acceptor for Fe(III)-reducing bacteria using lactate as an electron donor was in the range of 1.1$\times$106-4.6$\times$107MPNs/ml in the sediments collected from the sea-side of the lake, which were lower in heavy-methal concentration and higher in Fe-Mn content than those from other region. The number of Fe(III)-reducing bacteria using acetate as an electron donor was in the rang eof 4.3$\times$102-8.1$\times$105MPNs/ml in the same sediments. Chromate-reducing bacteria were more populated(4.6$\times$104-8.1$\times$105MPNs/ml) in the sediments contaminated by heavy metals. The number of sulfate-reducing bacteria wee counted in the sediments collected from the more contaminate inner-side than those from the sea-side of the lake.

Keywords

References

  1. Standard Methods for the Examination of Water and Wastewater(19th ed) APHA. American Public Health Association
  2. Standard Methods for the Examination of Water and Waste-water(17th ed) APHA. American Public Health Association
  3. Appl. Environ. Microbiol. v.56 Regulation of dissimilatory Fe(Ⅲ) reduction activity in Shewanella putrefaciens Arnold, R.G.;M.R. Hoffmann;T.J. Dichristina;F.W. Picardal
  4. Sediment Microbiology Microbiol activity in organically enriched marine sediments Battersby, N.S.;C.M. Brown;D. B. Nedwell(ed.);C. M. Brown(ed.)
  5. Sediment Microbiology Modelling the processes of organic matter degradation and nutrients recycling in sedimentary system Billen, G.;D.B. Nedwell(ed.);C. M. Brown(ed.)
  6. Int. J. syst. Bacteriol v.45 Bacillus infernus sp. nov., an Fe(Ⅲ)- and Mn(Ⅳ)- reducing anaerobe from the deep terrestrial subsurface Boone, D.R.;Y. Liu;Z.-J. Zhao;D.L. Balkwill;g.R. Drake;T.O. Stevens;H.C. Aldrich
  7. Arch. Microbiol. v.165 Geovibrio ferrireducens, a phylogenetically distinct dissimilatory Fe(Ⅲ)-reducing bacterium Caccavo, F.;J.D. Coates;R.A. Rosselo-Mora;W. Ludwig;K.H. Schleifer;D.R. Lovely;M.J. Mclnerney
  8. Arch. Microbiol v.164 Desulfuromonas palmitatis sp. nov., a marine dissimilatory Fe(Ⅲ) reducer that can oxidize long-chain fatty acids Coates, J.D.;D.J. Lonergan;E.J.P. Phillips;H. Jenter;D.R. Loveley
  9. J. Ind. Microbiol. v.14 Reduction of chromate by bacteria isolated from the cooling water of an electricity generating station Cooke, V. M.;M.N. Hughes;R.K. Poole
  10. Environ. Sci. Technol. v.20 Diagnostic trace-metal profiles in arctic lake sediments Cornwell, J.C.
  11. Appl. Environ. Microbiol. v.60 Reduction of Cr(VI) by a consortium of sulfate-reducing bacteria (SRB Ⅲ) Fude, L.;B. Harris;M.M. Urrutia;T.J. Beveridge
  12. Biology of Anaerobic Microorganisms Microbial reduction of Manganese and iron Ghiorse, W.C.;A.J.B. Zehnder(ed.)
  13. The sulfate-reducing bacteria. Comterporary Perspective Hansen, T. A.
  14. Wat. Res. v.24 Effect of pH and oxidation state of chromium on the behavior of chromium in the activated sludge process Imai, A.;E.F. Gloyna
  15. Soil Sci. Plant Nutr. v.9 Microbial reduction mechanism of ferric iron in Paddy soils. Part 1. Karmula, T.;Y. Takai;K. Ishikawa
  16. Biochemical engineering and Biotechnology v.12 no.1 The characteristics and utilzation of metal-reducing bacteria Kim, B.H.;H.J. Kim;M.S. Hyun
  17. American Society for Microbiology Growth measurement. Manual of Methods for General Microbiology Koch, A. L.
  18. Appl. Microbiol. Biotechnol. v.33 A method for removal of toxic chromium using a chromate-reducing strain of Enterobater cloacae Komori, K.;A. Rivas;K.Toda;H.Ohtake
  19. Arch. Microbiol. v.131 Different ks values for hydrogen of methanogenic bacteria and sulfate-reducing bacteria:An explanation for the apparent inhibition of methanogenesis by sulfate Krisjansson, J.K.;P. Schoenheit;R.K. Thauer
  20. J. Bacteriol v.178 Phylogenetic analysis of dissimilatory Fe(Ⅲ)-reducing beacteria Lonergan, D.J.;H.L. Jenter;J.D. Coates;E.J.P. Phillips;T.M. Schmidt;D.R. Lovely
  21. Microbiol. Rev. v.55 Dissimilatory Fe(Ⅲ) and Mn(Ⅳ) reduction Lovely, D.R.
  22. Appl. Environ. Microbiol. v.54 Novel mode of microbial energy metabolism: Organic carbon oxidation coupled to dissimilartory reduction of iron or manganese Lovely, D.R.;E.J.P. Phillips
  23. Appl. Environ. Microbiol. v.51 Organic matter mineralization with reduction of ferric iron in anaerobic sediments Lovely, D.R.;E.J.P Phillips
  24. Appl. Environ. Microbiol. v.61 Fe(Ⅲ) and $S^0$ reduction by Pelobactor carbinolicus Lovely, D.R.;E.J.P Phillips;D.J. Lonergan;P.K. Widman
  25. Arch. Microbiol. v.159 Geobacter metallireducens gen. nov. sp. nov., a microorganism capable of coupling the complete oxidation of organic compounds to the reduction of iron and other metals Lovely, D.R.;S.J. Giovannoni;D.C. White;J.E. Champine;E.J.P. Phillips;Y.A. Gorby;S. Goodwin
  26. J. Soil. Sci. v.32 Sorption of inorganic phosphate by iron- and aluminum-containing components McLaughlin, J.R.;J.C. Ryden;J.K. Syers
  27. J. Bacteriol v.179 Cloning and sequence of cymA, a gene encoding a tetraheme cytochrome c required for reduction of iron(Ⅲ), fumarate, and nitrate by Shewanella putrefaciens MR-1 Myers, C.R.;J.M. Myers
  28. Adv. Microbiol Ecol. v.7 The input and mineralization of organic carbon in anaerobic aquatic sediments Nedwell, D.B.
  29. Kor. J. Appl. Microbiol. Biotechnol. v.24 no.3 Corrlation between the number of anaerobic bacteria in the sediment determined by MPN method and organics of the overlying water in the Jungnang-cheon Park, D.H.;B.H. Kim;S.K. Lim;Y.H. Choi
  30. The Sulphate-reducing Bacteria(2nd ed.) Postgate, J.R.
  31. Syst. Appl. Microiol. v.17 Isolation and taxonomic characterization of a halotolerant, facultatively iron-reducer bacterium Rosselo-Mora, R.A.;F. Caccavo;K. Osterlehner;N. Springer;S. Spring;D. Schuler;W. Ludwing;R. Amann;M. Vanncanneyt;K.H. Schleifer
  32. Syst. Appl. Microbiol. v.18 Ferrimonas balearica gen. nov. sp. nov. a new marine facultative Fe(Ⅲ)-reducing bacterium Rosselo-Mora, R.A.;W. Ludwing;P. Kampfer;R. Amann;K.H. Schleifer
  33. Soil Sci. Plant Nutr v.30 Effect of molecular hydrogen on the reduction process of submerged doil Saito, M.;H.Wada
  34. The Prokaryotes(2nd ed.) The genera Acetogenium, Acetoanaerobium and Acetitomaculum Schink B.;M. Bomar;A. Balows(ed.);H.G. Trueper(ed.);M. Deorkin(ed.);W. Harder(ed.);K.H. Schleifer(ed.)
  35. Appl. Environ. Microbiol. v.59 Characterization of enzymatic reduction of hexavalent chromium by Escherichia coli ATCC 33456 Shen, H.;Y.-T. Wang
  36. Environ. Health Perspect v.92 The chemistry of chromium and some resulting analytical problems Shupack, S.I.
  37. Appl. Environ. Microbiol. v.43 Reduction of ferric iron in anaerobic, marine sediment and interaction with reduction of nitrate and sulfate Sorensen, J.
  38. Appl. Environ. Microbiol. v.63 A rapid and simplified method for estimating sulfate reduction activity and quantifying inorganic sulfides Ulrich, G.A.;L.R. Krumholz;J.M. Suflita
  39. Anal. Chem. v.27 Stability of clolrmetric reagent for chromium, s-diphenylcarbazide, in various solvents Urone, P.F.
  40. Appl. Environ. Microbiol. v.55 Isolation and characterizations of an Enterobacter cloacae strain that reduces hexavalent chromium under anaerobic conditions Wang, P.-C.;T. Mori;K. Komori;M. Sasatsu;K. Toda;H. Ohtake
  41. J. Ind. Microbiol. v.14 Bacterial reduction of hexavalent chromium Wang, Y.-T.;H. Shen.