• Title/Summary/Keyword: Heavy Duty

Search Result 444, Processing Time 0.031 seconds

Reinforcing Effect and Behaviors of Root-Pile in Heavy-Duty Direct Shear Test (대형직접전단시험에 의한 뿌리말뚝의 거동 및 보강효과)

  • Han, Jung-Geun;Jang, Sin-Nam
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.5 no.3
    • /
    • pp.23-30
    • /
    • 2002
  • In recently, using of steel reinforcements by reinforcing materials of the reinforced earth, micro-pile and root-pile etc,. is wide-spreading in the stabilizing control of cutting and embankment slopes, but the failure mechanism of reinforced earth as well as the effect of insert angles or types of reinforcement and others are not defined clearly. In this study, therefore heavy-duty direct shear tests were exercised on the reinforced soil and the non-reinforced soil, which was executed for research on the interaction of soil-reinforcement and theirs behavior. The hardness and softness and the standard sands were used for modeling of reinforced soil, the material constants for the computer simulation were estimated from the results of CD-Test. The effects of reinforcing and of friction increasing on the softness, area ratio of reinforcements is equal, were the better than them of the hardness, as well the reinforcing effects of shear strength without regard to the area ratio is much the same at $10^{\circ}$, insert angle of reinforced bar, differ from them of the existing study. Then, the results of numerical analysis showed that the behavior of reinforcements displayed bending resistance and shear resistance at $15^{\circ}$ and $30^{\circ}$, respectively. Also, the state of strain transfer was observed and the behavior of resistance mechanism on reinforcements presented almost the same them of landslides stabilizing pile.

Numerical Study on the Injector Shape and Location of Urea-SCR System of Heavy-duty Diesel Engine for Preventing $NH_3$ Slip (대형 디젤엔진용 SCR 시스템의 암모니아 슬립 억제를 위한 인젝터의 형상 및 위치에 관한 수치적 연구)

  • Jeong Soo-Jin;Lee Sang Jin;Kim Woo-Seung;Lee Chun Beom
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.1
    • /
    • pp.68-78
    • /
    • 2006
  • In the past few years, considerable efforts have been directed towards the further development of Urea-SCR(selective catalytic reduction) technique for diesel-driven vehicle. Although urea possesses considerable advantages over Ammonia$(NH_3)$ in terms of toxicity and handling, its necessary decomposition into Ammonia and carbon dioxide complicates the DeNOx process. Moreover, a mobile SCR system has only a short distance between engine exhaust and the catalyst entrance. Hence, this leads to not enough residence times of urea, and therefore evaporation and thermolysis cannot be completed at the catalyst entrance. This may cause high secondary emissions of Ammonia and isocyanic acid from the reducing agent and also leads to the fact that a considerable section of the catalyst may be misused for the purely thermal steps of water evaporation and thermolysis of urea. Hence the key factor to implementation of SCR technology on automobile is fast thermolysis, good mixing of Ammonia and gas, and reducing Ammonia slip. In this context, this study performs three-dimensional numerical simulation of urea injection of heavy-duty diesel engine under various injection pressure, injector locations and number of injector hole. This study employs Eulerian-Lagrangian approach to consider break-up, evaporation and heat and mass-transfer between droplet and exhaust gas with considering thermolysis and the turbulence dispersion effect of droplet. The SCR-monolith brick has been treated as porous medium. The effect of location and number of hole of urea injector on the uniformity of Ammonia concentration distribution and the amount of water at the entrance of SCR-monolith has been examined in detail under various injection pressures. The present results show useful guidelines for the optimum design of urea injector for reducing Ammonia slip and improving DeNOx performance.

Emission Characteristics of Hazardous Air Pollutants from Diesel Heavy Duty Buses for Euro 5 according to After-treatment Systems (배출가스 저감장치에 따른 Euro 5 경유 대형버스의 유해대기오염물질 배출특성)

  • Hong, Heekyoung;Mun, Sunhee;Chung, Taekho;Kim, Sunmoon;Seo, Seokjun;Kim, Jounghwa;Jung, Sungwoon;Hong, Youdeog
    • Journal of ILASS-Korea
    • /
    • v.23 no.4
    • /
    • pp.175-184
    • /
    • 2018
  • Emission characteristics of regulated (NOx, PM, CO, NMHC) and unregulated (VOCs, aldehydes, PAHs) air pollutants were investigated for diesel heavy duty buses equipped with different after-treatment systems (DPF+EGR and SCR) under urban driving cycle. The combustion temperature and the working temperature of SCR catalysts were important to make impact on NOx emissions, whereas PM emissions were low. The alkane groups dominated NMVOCs emissions, making 42.6~59.4% of sum of the NMVOCs emissions. Especially, alkane emissions of DPF+EGR-equipped vehicle included DOC had 14.9~15.5% higher than those of SCR-equipped vehicle due to low efficiency of oxidation catalyst. In the case of individual NMVOCs, n-nonane and propylene emissions highly occupied for DPF+EGR and SCR, respectively. Formaldehyde emissions among aldehydes were the highest and PAHs emissions were hardly detected except naphthalene and phenanthrene. The NMHC speciation has been shown to be the highest of the formaldehyde ranged 20.8~21.5%. The results of this study will be contributed to establish Korean HAPs emission inventory for automobile source.

AERODYNAMIC EFFECT OF ROOF-FAIRING SYSTEM ON A HEAVY-DUTY TRUCK

  • KIM C. H.;YOUN C. B.
    • International Journal of Automotive Technology
    • /
    • v.6 no.3
    • /
    • pp.221-227
    • /
    • 2005
  • Aim of this study is to investigate an aerodynamic effect of a drag-reducing device on a heavy-duty truck. The vehicle experiences two different kinds of aerodynamic forces such as drag and uplifting force (or downward force) as it is traveling straight forward at constant speed. The drag force on a vehicle may cause an increase of the rate of fuel consumption and driving instability. The rolling resistance of the vehicle may be increased as result of the negative uplifting or downward force on the vehicle. A device named roof-fairing system has been applied to examine the reduction of aerodynamic drag force on a heavy-duty truck. As for a engineering design information, the drag-reducing system should be studied theoretically and experimentally for the best efficiency of the device. Four different types of roof-fairing model were considered in this study to investigate the aerodynamic effect on a model truck. The drag and downward force generated by vehicle has been obtained from numerical calculation conducted in this study. The forces produced on four fairing models considered in this study has been compared each other to evaluate the best fairing model in terms of aerodynamic performance. The result shows that the roof-fairing mounted truck has bigger negative uplifting or downward force than that of non-mounted truck in all speed ranges, and drag force on roof-fairing mounted truck has smaller than that of non-mounted truck. The drag coefficient $(C_D)$ of the roof-fairing mounted truck (Model-3) is reduced up to $41.3\%$ than that of non-mounted trucks (Model-1). A downward force generated by a roof-fairing mounted on a truck is linearly proportional to the rolling resistance force. Therefore, the negative lifting force on a heavy-duty truck is another important factor in aerodynamic design parameter and should be considered in the design of a drag-reducing device of a tractor-trailer. According to the numerical result obtained from present study, the drag force produced by the model-3 has the smallest of all in all speed ranges and has reasonable downward force. The smaller drag force on model-3 with 2/3h in height may results of smallest thickness of boundary layer generated on the topside of the container and the lowest intensity of turbulent kinetic energy occurs at the rear side of the container.

Performance of Fuel Cell System for Medium Duty Truck by Cooling System Configuration (상용차용 고분자 전해질 연료전지 냉각시스템 배열에 따른 성능 특성)

  • WOO, JONGBIN;KIM, YOUNGHYEON;YU, SANGSEOK
    • Journal of Hydrogen and New Energy
    • /
    • v.32 no.4
    • /
    • pp.236-244
    • /
    • 2021
  • Fuel cell systems for medium duty truck require high power demands under driving. Since high power demands results in significant heat generation, thermal management is crucial for the performance and durability of medium duty truck. Therefore, various configurations of dual stacks with cooling systems are investigated to understand appropriate thermal management conditions. The simulation model consists of a dynamic fuel cell stack model, a cooling system model equipped with a controller, and the mounted controller applies a feedback controller to control the operating temperature. Also, In order to minimize parasitic power, the comparison of the cooling systems involved in the arrangement was divided into three case. As a result, this study compares the reaction of fuel cells to the placement of the cooling system under a variety of load conditions to find the best placement method.