• 제목/요약/키워드: Heatsink temperature

검색결과 22건 처리시간 0.042초

75W급 LED 가로등 모듈의 방열판 최적화와 열특성 분석 (Optimization of Heatsink and Analysis of Thermal Property in 75W LED Module for Street Lighting)

  • 이승민;이세일;양종경;이종찬;박대희
    • 전기학회논문지
    • /
    • 제59권3호
    • /
    • pp.609-613
    • /
    • 2010
  • In this paper, we optimized and simulated the heatsink of 75W LED module for street lighting and evaluated the optical properties with the manufactured heatsink. the structure of LED package make simple as chip and heatslug and thermal flow is analyzed by using the FEM(Finite Element Method) with CFdesign V10. Also, we measured the temperature of heatsink and evaluated the optical properties with infrared thermal image camera and integrated sphere system for luminous flux in $1\;[m^3]$ box. As results, Heatsink optimized in 3 mm pin thickness, 6 mm base thickness and 16 number of pin count by using Heatsink-designer and got the results which is the temperature of $47.37\;[^{\circ}C]$ and thermal resistance of $0.48407\;[W/^{\circ}C]$. In thermal flow simulation, the temperature of heatsink decreased from $51.54\;[^{\circ}C]$ to $51.51\;[^{\circ}C]$ and the temperature of heatsink by the time in real measurement decreased from $47.03\;[^{\circ}C]$ to $46.87\;[^{\circ}C]$. Moreover, we improve 0.68 % in the decreased ratio of the luminous flux.

30 W COB LED광원의 효율 개선을 위한 방열설계에 관한 연구 (A Study on Improving the Efficiency of a Heat Dissipation Design for 30 W COB LED Light Source)

  • 서범식;이기정;조영식;박대희
    • 한국전기전자재료학회논문지
    • /
    • 제26권2호
    • /
    • pp.158-163
    • /
    • 2013
  • In this paper, thermal analysis of heatsink for 30 W class Chip-on-Board (COB) LED light source is performed by using SolidWorks Flow Simulation package. In order to increase the convection heat transfer, number of fin and shape of the heatsink is optimized. Furthermore, a copper spread is applied between the COB LED light source and the heatsink to mitigate the heat concentration on the heatsink. With the copper spread, the junction temperature between the COB LED light source and the heatsink is $50.9^{\circ}C$, which is $5.4^{\circ}C$ lower than the heatsink without the copper spread. Due to the improvement of the junction temperature, the light output is improved by 5.8% when the LED light source is stabilized. The temperature difference between the simulation and measured result of the heatsink with the copper spread is within $2^{\circ}C$, which verifies the validity of the thermal design method using a simulation package.

인덕션 쿡탑 기구물 형상변경이 Heatsink 및 Coil 냉각성능에 미치는 영향에 대한 연구 (Study on the Cooling Performance of Heatsink for Induction Cooktop using Computational Fluid Dynamics)

  • 박동호;권명근;이동범;서응렬;박용종
    • 한국유체기계학회 논문집
    • /
    • 제18권3호
    • /
    • pp.33-37
    • /
    • 2015
  • A numerical study on the IPM/Bridge Diode cooling and coil cooling has been performed. Results are presented as plots of thermal resistance, temperature drop and RPM-ratio. CFD analysis for conventional cooling system has been performed as a reference case. As the RPM-Ratio was increased, heatsink thermal resistance and coil temperature were decreased. IPM/Bridge Diode thermal resistance and temperature of the coil is tended to be trade-off. The temperature of coil closest to the AC-motor fan showed the most significant change in accordance with duct design. The temperature of coil located at the top of DC-motor fan showed the most significant variation as the cooling air passes the heatsink fin area.

30W급 LED 투광등의 풍속에 따른 히트싱크 온도분포에 관한 실험적 연구 (An Experimental Study on Heatsink Temperature Distribution according to the Wind Speed of a 30W LED Floodlight)

  • 이영호;김대언;정한식;정효민;이중섭
    • 한국기계가공학회지
    • /
    • 제18권5호
    • /
    • pp.96-102
    • /
    • 2019
  • This study investigated the heat dissipation characteristics of a heat-sensitive LED. More than 80% of the power supply is converted into heat energy, which has a fatal impact on the lifetime of the LED. Therefore, the effective heat dissipation characteristics of a heatsink, such as a 30W floodlight, through forced convection were grasped and the heat transfer characteristics were tested. As a result, it was confirmed that the smaller the number of fins, the more the temperature distribution varies according to the wind velocity. In addition, the larger the number of fins, the smaller the temperature difference according to the wind velocity. Therefore, it was found through this experiment that excellent heat dissipation performance was exhibited as the heat dissipation area and wind velocity increased.

30W급 LED 투광등 설치각도에 따른 히트싱크 온도분포에 관한 연구 (A Study on Heatsink Temperature Distribution according to the Installation Angle of a 30W LED Floodlight)

  • 이영호;이중섭;정한식
    • 한국기계가공학회지
    • /
    • 제18권8호
    • /
    • pp.24-30
    • /
    • 2019
  • This study investigated the heat dissipation characteristics of a heat-sensitive LED. The results of the empirical test showed that the best temperature intensification was found at 90 with 15-fins, and the heatsink installed perpendicular to the direction of the flow of air was directly connected to the air in the largest heat shield area, leading to the best cooling, and the number of fin also resulted increase in the heat discharge area, resulting in the largest cooling action with 15 fins. It was found that the rate of air flow changed in the range of 1.5m/s to 2.5m/s, but only by a deviation of about $2^{\circ}C$ to $3^{\circ}C$ from the current state of 15 fins at 2.5m/s, and the rate of air flow increased, but the performance of the heat release was not significantly increased. As a result wind speed with minimum air flow conditions of 1.5m/s can greatly contribute to the heat dissipation performance.

플립 칩 본딩으로 패키징한 레이저 다이오우드 어레이의 열적 특성 변화 분석 (Analysis of thermal characteristic variations in LD arrays packaged by flip-chip solder-bump bonding technique)

  • 서종화;정종민;지윤규
    • 전자공학회논문지A
    • /
    • 제33A권3호
    • /
    • pp.140-151
    • /
    • 1996
  • In this paper, we analyze the variations of thermal characteristics of LD (laser diode) arrays packaged by a flip-chip bonding method. When we simulate the temperature distribution in LD arrays with a BEM (boundary element method) program coded in this paper, we find that thermal crosstalks in LD arrays packaged by the flip-chip bonding method increases by 250-340% compared to that in LD arrays packaged by previous methods. In the LD array module packaged by the flip-chip bonding technique without TEC (thermo-electric cooler), the important parameter is the absolute temperature of the active layer increased due cooler), the important parameter is the absolute temperature of th eactiv elayers of LD arrays to thermal crosstalk. And we find that the temperature of the active layers of LD arrays increases up to 125$^{\circ}C$ whenall four LDs, without a carefully designed heatsink, are turned on, assuming the power consumption of 100mW from each LD. In order to reduce thermal crosstalk we propose a heatsink sturcture which can decrease the temeprature at the active layer by 40%.

  • PDF

탄소나노튜브 양에 따른 CMP-PLA 방열 소재의 특성 (Characteristics of CMP-PLA Heatsink Materials with Carbon Nanotube Contents)

  • 김영곤
    • 한국전기전자재료학회논문지
    • /
    • 제26권12호
    • /
    • pp.924-927
    • /
    • 2013
  • In this study, we proposed CMP-PLAs to replace the Al heat sinks as heat sink materials, and investigated heat dissipation characteristics of the LED lighting devices using them. The crystallinity of the proposed CMP-PLA heat sinks decreased with increasing carbon nanotube contents in CMP-PLA. However, the thermal conductivity was improved with the increase of the carbon nanotube contents. The heat dissipation characteristics of the LED lighting devices using CMP-PLA heat sinks was improved with increasing carbon nanotube contents in CMP-PLA. For the LED lighting devices using CMP-PLA heat sinks with 40% carbon nanotube contents, the initial temperature measured at the heat sink plate was $27^{\circ}C$, which increased as time, and it was saturated around $56^{\circ}C$ after an hour. The LED lighting devices using CMP-PLA heat sinks are expected to be functional materials that can reduce their weight and improve their electric properties, compared to those using existing Al heat sinks.

집단보호장비 내의 회로카드조립체 고장 원인 분석 및 품질 향상 (Analysis of Causes PCB Failure for Collective Protection Equipment and Improvement of Quality)

  • 박세진;기상식
    • 한국산학기술학회논문지
    • /
    • 제20권5호
    • /
    • pp.87-92
    • /
    • 2019
  • 본 논문은 집단보호장비에 들어가는 회로카드조립체의 고장 원인 분석 및 품질 개선에 관한 연구이다. 해당 장비는 현재 운용중인 무기체계의 구성품으로 냉난방 기능뿐만 아니라, 화생 방어 역할을 한다. 그런데 군에서 운용중에 응축부조립체의 팬이 동작하지 않는 현상이 다수 발생되었다. 이에 따라 고장 원인을 분석하였고 특정 회로카드조립체가 소손됨을 확인하였다. 고온의 환경조건에서 지속적인 냉방가동에 따라 부품이 가열되고 이에 따라 고온에 노출된 전자부품이 열화되어 소손됨을 알 수 있었다. 따라서 본 논문은 이를 해결하기 위해 방열판을 적용하여 과온 동작에 의한 고장빈도를 낮추고 회로카드조립체의 수명을 연장한 품질 개선에 관한 연구이다. 개선된 회로카드조립체는 실험을 통해 방열성능을 확인하였다. 뿐만 아니라 체계 호환성 검사, 양압유지, 소음 시험, 작동시험 등을 통해 성능검사를 마쳤으며 현재 개선된 제품을 적용중이다. 이번 개선을 통해 현재까지 해당 회로카드조립체에서 발생한 고장은 없으며 해당 장비의 품질이 향상됨을 확인하였다.

30W급 LED 투광등 히트싱크 높이변화에 따른 온도분포에 관한 실험적 연구 (An Experimental Study on the Temperature Distribution according to the Heat Sink Height of 30W LED Floodlight)

  • 김대언;정한식;정효민;이중섭
    • 한국기계가공학회지
    • /
    • 제16권5호
    • /
    • pp.150-156
    • /
    • 2017
  • This study tests the characteristics of heat radiation by applying the pin-height variables to 30-W LED floodlights. The angle of the heat sink enables us to identify the characteristics of the heat radiation based on the temperature distribution. The results of the study are as follows. When the heat sinks are set towards the ground, the heat transfer decreases in speed only to expands the temperature distribution, which adversely affects the characteristics of heat radiation and expands the temperature distribution of PCB with the LED chip. We verify that the characteristics of heat radiation are adversely affected when the height of the cooling pin decreases and the heat radiation area decreases, which impedes the heat transfer and increases the temperature distribution on the heat sink.

MR16용 LED 램프 조명설계 (Design of Optical System for LED Lamp using MR16)

  • 박준형;문병권;유인호
    • 한국산학기술학회논문지
    • /
    • 제13권10호
    • /
    • pp.4725-4732
    • /
    • 2012
  • 본 논문은 다면체 반사판(Multifaceted Reflector :MR16)을 사용하여 할로겐 광원을 LED광원으로 대체함으로서 기존 MR16의 장점을 수용하고 더불어 단점을 커버할 수 있는 MR16에 대해 연구하였다. 본 연구에서는 4매의 비구면 렌즈를 1 Sheet로 한 광학계를 적용한 LED용 MR16을 개발하였다. 광학 소프트웨어를 통해 비구면 광학계를 설계하였고, 조명 시뮬레이션 프로그램을 사용하여 설계 데이터의 조명성능을 예측하였다. 또한 방열 해석 프로그램을 통해 Heatsink의 열 성능을 예측하였다. 최종적으로 시뮬레이션 분석 데이터를 토대로 광학 시제품을 제작하고, 직접 성능을 측정하여 설계데이터와 비교 분석하여 다음과 같은 결과를 얻었다. MR16의 배광각도는 $50^{\circ}{\sim}60^{\circ}$내외로 시뮬레이션 분석 결과와 시제품의 측정결과가 유사하였으며, 온도측정 결과는 1분 30초경부터 열 평행을 이루었고 이의 시뮬레이션 결과와 시제품 모두 최대 $60^{\circ}C$까지 열이 오르는 것을 확인하였다. 마지막으로 MR16의 배광곡선 역시 제작된 시제품의 성능측정 결과가 유사함을 보여주었다.