• 제목/요약/키워드: Heating surface

검색결과 1,611건 처리시간 0.025초

가열에 의한 플라스틱 렌즈의 변화 연구 (Study on the Changes of Ophthalmic Plastic Lens due to Heating)

  • 조현국;문병연
    • 한국안광학회지
    • /
    • 제16권3호
    • /
    • pp.247-253
    • /
    • 2011
  • 목적: 가열에 의한 플라스틱 렌즈의 변화를 연구하고자 하였다. 방법: -2.00D의 플라스틱 렌즈를 60-100$^{\circ}C$의 온도로 가열한 후 렌즈 굴절력의 변화, 표면 상태의 변화, 투과율의 변화를 조사하였다. 결과: 70$^{\circ}C$에서 1시간, 75$^{\circ}C$에서 10분, 100$^{\circ}C$에서 10초가 렌즈 표면의 변화를 일으키는 시작점으로, 가열온도가 높을수록, 중굴절률렌즈보다 고굴절률렌즈에서 균열이 더 심하게 발생되었다. 투과율은 균열의 정도가 심해짐에 따라 감소되었다. 결론: 70$^{\circ}C$이상의 가열은 렌즈에 변형을 발생시킬 수 있으므로 안경사는 착용자의 작업환경을 고려하여 적절한 렌즈를 추천하여야 하며, 착용자가 안경 사용에 주의를 기울일 수 있도록 안내를 해야 할 것이다.

KSR-III 공력가열 해석 및 비행시험 (Aerodynamic Heating Analysis and Flight Test of KSR-III Rocket)

  • 김성룡;이준호;김인선;조광래
    • 한국항공우주학회지
    • /
    • 제32권8호
    • /
    • pp.54-63
    • /
    • 2004
  • 2002년 11월 28일 발사된 KSR-III 과학로켓에서 공력가열로 인한 온도상승을 측정하였으며, 로켓 외피의 온도 및 공력가열량을 계산하였다. 계산에 사용된 소프트웨어는 이론식에 기초한 경계층을 해석하여 비행시간동안 비정상 공력가열량을 계산하는 MINIVER 코드이며, 비행체 내부로의 일차원 고체 열전도까지 고려하였다. 계산 결과 비행체 내부 페이로드 장착부분의 열전달은 대부분 복사로 이루어지고, 공력가열로 인한 KSR-III 외피 최고온도는 핀에서 $223^{\circ}C$이며 최대 공력가열은 노즈캡에서 $133kW/m^2$이었다. 중요부분에서 재질의 허용온도를 만족하였으며 외피 단열재 설계가 적절히 이루어졌음이 확인되었다.

Experimental study on the influence of heating surface inclination angle on heat transfer and CHF performance for pool boiling

  • Wang, Chenglong;Li, Panxiao;Zhang, Dalin;Tian, Wenxi;Qiu, Suizheng;Su, G.H.;Deng, Jian
    • Nuclear Engineering and Technology
    • /
    • 제54권1호
    • /
    • pp.61-71
    • /
    • 2022
  • Pool boiling heat transfer is widely applied in nuclear engineering fields. The influence of heating surface orientation on the pool boiling heat transfer has received extensive attention. In this study, the heating surface with different roughness was adopted to conduct pool boiling experiments at different inclination angles. Based on the boiling curves and bubble images, the effects of inclination angle on the pool boiling heat transfer and critical heat flux were analyzed. When the inclination angle was bigger than 90°, the bubble size increased with the increase of inclination angle. Both the bubble departure frequency and critical heat flux decreased as the inclination angle increased. The existing theoretical models about pool boiling heat transfer and critical heat flux were compared. From the perspective of bubble agitation model and Hot/Dry spot model, the experimental phenomena could be explained reasonably. The enlargement of bubble not only could enhance the agitation of nearby liquid but also would cause the bubble to stay longer on the heating surface. Consequently, the effect of inclination angle on the pool boiling heat transfer was not conspicuous. With the increase of inclination angle, the rewetting of heating surface became much more difficult. It has negative effect on the critical heat flux. This work provides experimental data basis for heat transfer and CHF performance of pool boiling.

점진적 컴프레션 및 유연면상발열을 통한 혈액순환 개선 여성 레깅스 프로토타입 개발 및 평가 (Development and evaluation of women's leggings prototype for improvement of blood circulation through flexible heating surface and gradual compression)

  • 황진희;이윤아;지승현;김선희
    • 한국의상디자인학회지
    • /
    • 제25권3호
    • /
    • pp.53-67
    • /
    • 2023
  • Blood circulation is one of the most important life support functions of our body. It is essential to maintain healthy blood circulation as problems with blood circulation can lead to numerous diseases and serious complications. This study developed women's leggings with gradual compression and soft surface heating functions to improve blood circulation, and evaluated their performance and wearability. A silicon print pattern was developed to provide gradual compression, and a flexible heating surface coated with MWCNT (multi-walled carbon nanotube) conductive ink was fabricated for comfort and thermal effect. For the design, incision lines and materials were applied in consideration of aesthetic aspects, and design lines and colors were altered using a 3D program. The developed leggings showed that blood circulation can be improved when gradual compression and heating functions are simultaneously applied. Results were confirmed through measurements of clothing pressure, blood flow, and surface temperature. In the subjective wearability evaluation, it was confirmed that wearers felt gradual pressure, and they showed high satisfaction with wearability and design.

카본블랙/나일론 66 혼합 나노섬유웹의 마이크로파에 의한 접착거동 (Bonding Behavior of Carbon Black/Nylon 66 Hybrid Nanofiber Webs via Microwave Heating)

  • Shin, Dong-Ho;Joo, Chang-Whan
    • 한국섬유공학회:학술대회논문집
    • /
    • 한국섬유공학회 2003년도 가을 학술발표회 논문집
    • /
    • pp.114-117
    • /
    • 2003
  • Conventional heating the heat source cause the molecules to react from the surface toward the center so that successive layers of molecules heat in turn. The product surfaces may be in danger of over heating by the time heat penetrates the material. Microwave, however, produce a volume heating effect. All molecules are set in action at the same time. It also evens temperature gradients and offers other important benefits such as selective heating. (omitted)

  • PDF

냉동고 무전극램프 적용 탄소-유기소재 면상발열체의 열 특성에 관한 연구 (A Study on Thermal Characteristics of Carbon-Organic Surface Heating Element with Electrodeless Lamp of a Freezer)

  • 이민상;백성훈;강성수
    • 한국기계가공학회지
    • /
    • 제19권1호
    • /
    • pp.1-10
    • /
    • 2020
  • This study deals with the fabrication and thermal characterization of planar heating elements attached to the backside of the reflector used in the electrodeless lamp of a freezer. We tried to solve the problem of the local heat generation of the linear heating element that occurs about 50℃. The homogeneous dispersion and manufacturing excellence of the planar heating element produced were confirmed through SEM and EDS. In addition, the test specimens was prepared according to the change in the ratio of carbon fiber to the basis weight of the planar heating element, and a sample having a basis weight of 50g/㎡ having a content ratio of carbon fiber of 70% was selected. That sample showed low surface resistance of 4.3Ω/sq and high temperature of about 81℃ at 6V. Durability was confirmed by performing repeated bending evaluation of 3000 cycles for the sample. Large area test specimens were prepared to be applied to the actual reflector, insulated by EVA film and analyzed for their thermal characteristics. From 13V application, the temperature of the linear heating element was higher than 50℃ and the average temperature of 68℃ was maximum at 18V.

탄소나노섬유복합체를 이용한 의류용 직물발열체의 제조 및 특성 (Preparation and Characterization of Carbon Nanofiber Composite Coated Fabric-Heating Elements)

  • 강현숙;이선희
    • 한국의류학회지
    • /
    • 제39권2호
    • /
    • pp.247-256
    • /
    • 2015
  • This study prepared fabric-heating elements of carbon nanofiber composite to characterize morphologies and electrical properties. Carbon nanofiber composite was prepared with 15wt% PVDF-HFP/acetone solution, and 0, 1, 2, 4, 8, and 16wt% carbon nanofiber. Dispersion of solution was conducted with stirring for a week, sonification for 24 hours, and storage for a month, until coating. Carbon nanofiber composite coated fabrics were prepared by knife-edge coating on nylon fabrics with a thickness of 0.1mm. The morphologies of carbon nanofiber composite coated fabrics were measured by FE-SEM. Surface resistance was determined by KS K0555 and worksurface tester. A heating-pad clamping device connected to a variable AC/DC power supply was used for the electric heating characteristics of the samples and multi-layer fabrics. An infrared camera applied voltages to samples while maintaining a certain distance from fabric surfaces. The results of morphologies indicated that the CNF content increased specifically to the visibility and presence of carbon nanofiber. The surface resistance test results revealed that an increased CNF content improved the performance of coated fabrics. The results of electric heating properties, surface temperatures and current of 16wt% carbon nanofiber composite coated fabrics were $80^{\circ}C$ and 0.35A in the application of a 20V current. Carbon nanofiber composite coated fabrics have excellent electrical characteristics as fabric-heating elements.

온풍난방을 채용한 3연동 플라스틱 하우스의 실내공기용적 변화가 하우스 온열환경에 미치는 영향 (Influence on the Thermal Environment by Change of Indoor-air Volume of Plastic Greenhouse with Hot Air Heating Systems)

  • 전삼채;이창수;나수연;허종철;최동호
    • 한국태양에너지학회 논문집
    • /
    • 제22권3호
    • /
    • pp.1-10
    • /
    • 2002
  • Relatively being economical in installation and easy in operation, hot-air heating system has been generally used in greenhouse for heating system regardless of high cost in maintenance and uneven distribution of air temperature. Therefore to overcome the disadvantages in maintenance and in distribution of air temperature and to improve efficiency of heating system, this experimental study is performed. This experimental study aims to improve the character of uneven temperature distribution in vertical direction and to reduce energy consumption for heating in a greenhouse. The experiment had been performed to investigate change of thermal environment and effects on reducing energy consumption for heating in greenhouse by additional surface insulation and reduction of indoor-air volume that come by installing transparent vinyl membranes with different height in each house. The results show that there is a wide difference in oil-energy consumption between houses according to condition of surface insulation and change of indoor-air volume. Furthermore, the results show that the efficiency of dual surface is higher than that of change of indoor-air volume in terms of energy saving.

금형온도 능동제어 시스템 적용을 위한 고 내구성 마이크로 히터의 설계 및 제작 (Design and Fabrication of Durable Micro Heater for Intelligent Mold System)

  • 노철용;김영민;최용;강신일
    • 정보저장시스템학회:학술대회논문집
    • /
    • 정보저장시스템학회 2005년도 추계학술대회 논문집
    • /
    • pp.26-30
    • /
    • 2005
  • Stamper surface temperature is very critical in replicating the high density optical disc substrates using injection molding as the pit or land/groove patterns on the optical disc substrate have decreased due to the rapid increase of areal density. During the filling stage, the polymer melt in the vicinity of the stamper surfaces rapidly solidifies and the solidified layer generated during polymer filling greatly deteriorates transcribability and fluidity of polymer melt. To improve transcribability and fluidity of polymer melt, stamper surface temperature should be controlled such that the growth of the solidified layer is delayed during the filling stage. In this study, the effect of heating on replication process was simulated numerically. Then, an injection mold equipped with instant active heating system was designed and constructed to raise the stamper surface temperature over the glass transition temperature during filling stage of the injection molding. Also, the closed loop controller using the Kalman filter and the linear quadratic Gaussian regulator was designed. As a result, the stamper surface temperature was controlled according to the desired reference stamper surface temperature.

  • PDF

금형온도 능동제어 시스템 적용을 위한 고 내구성 마이크로 히터의 설계 및 제작 (Design and Fabrication of Durable Micro Heater for Intelligent Mold System)

  • 노철용;김영민;최용;강신일
    • 정보저장시스템학회논문집
    • /
    • 제2권2호
    • /
    • pp.100-104
    • /
    • 2006
  • Stamper surface temperature is very critical in replicating the high density optical disc substrates using injection molding as the pit or land/groove patterns on the optical disc substrate have decreased due to the rapid increase of areal density. During the filling stage, the polymer melt in the vicinity of the stamper surfaces rapidly solidifies and the solidified layer generated during polymer filling greatly deteriorates transcribability and fluidity of polymer melt. To improve transcribability and fluidity of polymer melt, stamper surface temperature should be controlled such that the growth of the solidified layer is delayed during the filling stage. In this study, the effect of heating on replication process was simulated numerically. Then, an injection mold equipped with instant active heating system was designed and constructed to raise the stamper surface temperature over the glass transition temperature during filling stage of the injection molding. Also, the closed loop controller using the Kalman filter and the linear quadratic Gaussian regulator was designed. As a result. the stamper surface temperature was controlled according to the desired reference stamper surface temperature.

  • PDF