• Title/Summary/Keyword: Heating source

Search Result 901, Processing Time 0.03 seconds

Current Regulated Delta Modulator for Series Resonant Inverter with Transformer-Coupled Load (변압기-결합형 직렬공진 인버터의 델타변조 전류제어)

  • 안희욱;김학성
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.4 no.3
    • /
    • pp.231-239
    • /
    • 1999
  • An improved version of current-regulated delta modulator (CRDM) is investigated for the output cunent control of v voltage-source inverters that have transformer-coupled series resonant load and are operated at the resonant frequency. Conventional CRDM has not only CUlTent offset problem but also transformer flux saturation problem when i it is applied to induction heating systems that have transformel-coupled loads. To cope with these problems, the effect of flux saturation is analysed, and simple method to av이d the problem is proposed. And integral type of CRDM is a adopted to remove the cunent offset. The boundaries of integrator gain for stable operation is calculated using the c concept of sliding mode controL The validity of proposed strategy is vel퍼ed through simulations and prototype e experiments.

  • PDF

Feasibility Study of High-Efficiency Ground Heat Exchanger using Double U-tube through a Real-Scale Experiment

  • Bae, Sangmu;Kim, Jaemin;Nam, Yujin
    • KIEAE Journal
    • /
    • v.17 no.4
    • /
    • pp.33-39
    • /
    • 2017
  • Purpose: The use of renewable energy system is essential for building energy independence and saving energy consumption in the building sector. Among renewable energy technologies, ground source heat pump(GSHP) system is more energy-efficient and environmental-friendly than other heat source systems due to utilize stable ground heat source. However, the GSHP system requires a high initial installation cost and installation space in limited urban area, so it is difficult to have superiority in the market of heat source system. Therefore, it is necessary to develop the installation method of low-cost and improve system performance. This paper aims to evaluate the performance of double u-tube ground heat exchanger(GHX) and verify system feasibility through real-scale experiment. Method: In this study, the real-scale experiment of vertical closed-type GSHP system was conducted using double u-tube GHX and high-efficiency grout. Through the verification experiment, heat source temperature, heat exchange rate(HER) and seasonal performance factor(SPF) were measured according to the long-term operation. In addition, the feasibility analysis was conducted comparing to the single u-tube system. Result: In the results of experiment, average HER was 136.27 W/m and average SPF was 5.41. Furthermore, compared to the single u-tube, the installation cost of the developed system could be reduced about 70% in the same heating load condition.

A 15 nm Ultra-thin Body SOI CMOS Device with Double Raised Source/Drain for 90 nm Analog Applications

  • Park, Chang-Hyun;Oh, Myung-Hwan;Kang, Hee-Sung;Kang, Ho-Kyu
    • ETRI Journal
    • /
    • v.26 no.6
    • /
    • pp.575-582
    • /
    • 2004
  • Fully-depleted silicon-on-insulator (FD-SOI) devices with a 15 nm SOI layer thickness and 60 nm gate lengths for analog applications have been investigated. The Si selective epitaxial growth (SEG) process was well optimized. Both the single- raised (SR) and double-raised (DR) source/drain (S/D) processes have been studied to reduce parasitic series resistance and improve device performance. For the DR S/D process, the saturation currents of both NMOS and PMOS are improved by 8 and 18%, respectively, compared with the SR S/D process. The self-heating effect is evaluated for both body contact and body floating SOI devices. The body contact transistor shows a reduced self-heating ratio, compared with the body floating transistor. The static noise margin of an SOI device with a $1.1\;{\mu}m^2$ 6T-SRAM cell is 190 mV, and the ring oscillator speed is improved by 25 % compared with bulk devices. The DR S/D process shows a higher open loop voltage gain than the SR S/D process. A 15 nm ultra-thin body (UTB) SOI device with a DR S/D process shows the same level of noise characteristics at both the body contact and body floating transistors. Also, we observed that noise characteristics of a 15 nm UTB SOI device are comparable to those of bulk Si devices.

  • PDF

Establishing a Energy Utilization Database for Energy Performance Evaluation of Multi-Family Housing using District Heating (지역난방 공동주택의 에너지 성능 평가를 위한 공동주택 단지별 에너지사용량 Database 구축)

  • Jeong, Jaewook;Hong, Taehoon;Ji, Changyoon;Leigh, Seung-Bok
    • Korean Journal of Construction Engineering and Management
    • /
    • v.16 no.5
    • /
    • pp.105-113
    • /
    • 2015
  • In order to evaluate the energy performance of buildings, it is important to determine reliable information of energy utilization during operating phase. It is also required to establish the database which have the amounts of population deducted by objective filtering and analysis. In this study, all energy sources were applied to evaluate synthetically the energy performance of Multi-Family Housings(MFH) using district heating and the amounts of population were obtained sufficiently through data searching in Seoul and neighbor cities. Finally the database of source energy utilization and $CO_2$ emission in 325 MFH complexes were established through cross validation between data sources and statistical analysis. Additionally, further ideas have been proposed to improve existing MFH Management Information System.

Material Life Cycle Assessment of Extrusion Process of A7003 (A7003 알루미늄 합금 압출공정의 MLCA 산정기술)

  • Jo Huyng-ho;Cho Hoon;Kim Byung-min;Kim Young-jig
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2002.11a
    • /
    • pp.43-49
    • /
    • 2002
  • A7003 alloy has characteristics of their excellent weldability, high corrosion resistance and superior plastic working however the broadening of application for the alloy has been hampered by the lower extrudability associated by Mg content. For improvement of extrudability and enhanced recovery efficiency during Al scrap recyeling, it has been generally practiced to reduce Mg content in A7003 alloy. Therefore, it is necessary to investigate the influence of Mg content on mechanical strength and extrudability of A7003 alloy. For efficient material processing which has small amounts, life cycle assessment in material processing(MLCA) is evaluated. The quantitative analysis of energy requirements and $CO_2$ emission for production of A7003 extruded bar are estimated with different Mg content and billet pre-heating process (heating source by light oil or LPG). In particular, the estimation of energy requirements was performed within shipping and gating range (except the mining and extraction stages)to investigate the influence of the variables on energy requirements and $CO_2$ emission in detail. As Mg content increased, the flow stress and the extrusion pressure for A7003 alloy increased. It has been thought that an increment in extrusion pressure with increasing Mg content is caused by the solid solution hardening of Mg atoms in the matrix and increment in volume fraction of intermetallic compound, $Mg_2Si$. The extrudability and the tensile strength are equal to, or above that of conventional A 7003 alloy even the content of Mg varied from $1.1wt.\%\;to\;0.5wt.\%$ alloy. This means that minimizing the content of Mg in A7003 alloy can enhance recovery efficiency during Al scrap recycling. It can be quoted that rather than Mg content energy source for billet heating is a prime factor to determine the atmospheric $CO_2$ emission.

  • PDF

Evaporation Characteristics of Aluminum by Using Surface-treated Graphite Boat (표면처리된 흑연 보트를 이용한 알루미늄의 증발 특성)

  • Jeong, J.I.;Yang, J.H.
    • Journal of the Korean institute of surface engineering
    • /
    • v.42 no.1
    • /
    • pp.1-7
    • /
    • 2009
  • Resistive heating sources are widely used to prepare thin films by vapor deposition because they are cheap, and easy to install and handle in vacuum system. Graphite is one of materials used to make the resistive heating source, but until now only limited applications have been possible as it reacts easily with evaporating materials at high temperature. In this study, evaporation characteristics of aluminum have been investigated by using graphite boat thermally treated with BN powder. The employed graphite boat has been prepared by spray-coating BN power onto the cavity surface of the boat and thermal treatment with aluminum in vacuum at the temperature of more than $1400^{\circ}C$. The voltage-current characteristics as well as resistivity changes of the graphite boat have been investigated during aluminum evaporation according to the applied voltage and time. The evaporation aspect has been picturized during flash evaporation for 40 seconds based on the characterization results. The evaporation rate of the graphite boat has been compared with that of BN boat. The graphite boat showed some different characteristics compared with BN boat, in that the evaporation occurred at the last stage of flash evaporation. The film appearance according to the applied voltage has been compared, and also the reflectance of the resulting film has been investigated according to the film thickness. It has been found that the graphite boat thermally treated with BN powder can be used for aluminum evaporation without problem.

Simulation Experiment of PEMFC Using Insulation Vessel at Low Temperature Region (저온영역에서 단열용기를 이용한 연료전지 모의 실험)

  • Jo, In-Su;Kwon, Oh-Jung;Kim, Yu;Hyun, Deok-Su;Park, Chang-Kwon;Oh, Byeong-Soo
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.19 no.5
    • /
    • pp.403-409
    • /
    • 2008
  • Polymer electrolyte membrane fuel cell (PEMFC) is very interesting power source due to high power density, simple construction and operation at low temperature. But it has problems such as high cost, improvement of performance, effect of temperature and initial start at low temperature. These problems can be approached to be solved by using experiment and mathematical method which are general principles for analysis and optimization of control system for heat and hydrogen detecting management. In this paper, insulation vessel and control system for stable operation of fuel cell at low temperature were developed for experiment. The constant temperature capability and the heating time at sub-zero temperatures with insulation control system were studied by using a heating bar of 60W class. PEMFC stack which was made by 4 cells with $50\;mc^2$ active area in each cell is a thermal source. Times which take to reach constant temperature by the state of insulation vacuum were measured at variable environment temperatures. The test was performed at two conditions: heating mode and cooling mode. Constant temperature capability was better at lower environment temperature and vacuum pressure. The results of this experiment could be used as basis data about stable operation of fuel cell stack in low temperature zone.

Study on the Producing SiC Based Briquette for Raised Temperature of Molten Steel using Si Sludge Induced in the Process of Si Fabrication (실리콘 제조 공정에서 발생한 실리콘 슬러지를 활용한 용강 SiC계 승온제 제조 연구)

  • Lee, Chang-Hyun;Lee, Sang-Ro;Park, Man-Bok;Koo, Yeon-Soo;Lee, Man-Seung
    • Resources Recycling
    • /
    • v.26 no.6
    • /
    • pp.45-49
    • /
    • 2017
  • Most Waste slurry is produced in the process of silicon manufacturing for semiconductor industry, containing silicon (Si) and silicon carbide (SiC). Waste slurry is simply stored with solidifying by cement or buried. On the other hand, it was suggested in this study that the waste slurry should be used for heating source as supplementary material in steel making process. The waste slurry was refined and pulverized, which was recycled into SiC-based sludge briquette. Chemical composition for SiC-based sludge briquette was analyzed and the feature of heating source was observed in accordance with the injection time and input amount. As a result, SiC-based sludge briquette in terms of low cost and high efficiency had an effect on increasing liquid steel temperature in steel making plants.

A numerical analysis of the PCM applied Thermal Protection System (상변화물질을 이용한 열방어체계의 수치해석 연구)

  • Oh, Chang-Mook;Yoo, Young-June;Lee, Hyung-Joo;Min, Sung-Ki
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.622-627
    • /
    • 2010
  • This paper is focused on the numerical analysis of two Thermal Protection Systems. Both systems have been provided two different temperature of heating at two walls. Outer wall is heated by high temperature($T_{max}$). Inner wall is heated by heat source($710W/m^2$) while the outer wall is heated. Each system has been provided one side heating(outer wall only) and both side heating respectively. The effects of the heat transfer of both sides of wall, PCM temperature variance through the operation time and Inner space average temperature are investigated. The results have shown that the duration of latent heat mainly depends on the materials, the direction of heat transfer and the heat source and these factors should be concerned in the future.

  • PDF

Heat Exchanger Design of a Heat Pump System Using the Heated Effluent of Thermal Power Generation Plant as a Heat Source for Greenhouse Heating (화력발전소의 온배수를 열원으로 이용하는 시설원예 난방용 히트펌프 시스템의 열교환기 설계기준 설정)

  • Ryou, Young Sun;Kang, Youn Ku;Jang, Jae Kyung;Kim, Young Hwa;Kim, Jong Goo;Kang, Geum Chun
    • Journal of Bio-Environment Control
    • /
    • v.21 no.4
    • /
    • pp.372-378
    • /
    • 2012
  • This study was carried out in order to determine the optimum length of a roll type PE pipe heat exchanger employed in the water-to-water heat pump system using the waste heat of the heated effluent flowed out from thermal power generation plants as a heat source. And the heat pump system of 30 RT for an experimental test was designed and manufactured. And also PE pipes were employed to recover the waste heat from the heated effluent. The inside diameter of PE pipe heat exchanger was 20 mm, the thickness was 2 mm and the diameter of a roll was 1,000 mm. And from the results of this study, we found that the optimum length of PE pipe heat exchanger was 75 m per the heat pump capacity of 1.0 RT (3.51 kW) and then the heating COP of heat pump system was 3.8.