• Title/Summary/Keyword: Heating source

Search Result 897, Processing Time 0.034 seconds

Cooling and Heating Performance of Ground Source Heat Pump using Effluent Ground Water (유출지하수열원 지열히트펌프의 냉난방성능)

  • Park, Geun-Woo;Nam, Hyun-Kyu;Kang, Byung-Chan
    • Proceedings of the SAREK Conference
    • /
    • 2007.11a
    • /
    • pp.434-440
    • /
    • 2007
  • The Effluent ground water overflows in deep and broad ground space building. Temperature of effluent ground water is in 12$\sim$18$^{\circ}C$ annually and the quality of that water is as good as living water. Therefore if the flow rate of effluent ground water is sufficient as source of heat pump, that is good heat source and heat sink of heat pump. Effuent ground water contain the thermal energy of surrounding ground. So this is a new application of ground source heat pump. In this study open type and close type heat pump system using effluent ground water was installed and tested for a church building with large and deep ground space. The effluent flow rate of this building is 800$\sim$1000 ton/day. The heat pump capacity is 5RT each. The heat pump system heating COP was 3.0$\sim$3.3 for the open type and 3.3$\sim$3.8 for the close type system. The heat pump system cooling COP is 3.2$\sim$4.5 for the open type and 3.8$\sim$4.2 for close type system. This performance is up to that of BHE type ground source heat pump.

  • PDF

A Study on the Optimal Energy Mix Model in Buildings with OEMGD Algorithm Focusing on Ground Source Heat Pump and District Heating & Cooling System (OEMGD 알고리즘을 이용한 건물 냉난방용 최적 에너지 믹스 모델에 관한 연구 - 지열히트펌프와 지역냉난방 시스템을 중심으로)

  • Lee, Key Chang;Hong, Jun Hee;Lee, Kyu Keon
    • The Korean Journal of Community Living Science
    • /
    • v.27 no.2
    • /
    • pp.281-294
    • /
    • 2016
  • This study was conducted to promote consumer interest in Geothermal Heat Pump (Ground Source Heat Pump, GSHP) and district heating and cooling (District Heating & Cooling, DHC) systems, which are competing with each other in the heating and cooling field. Considering not only the required cost data of energy itself, but also external influence factors, the optimal mix ratio of these two energy systems was studied as follows. The quantitative data of the two energy systems was entered into a database and the non-quantitative factors of external influence were applied in the form of coefficients. Considering both of these factors, the optimal mix ratio of GSHP and DHC systems and minimum Life Cycle Cost (LCC) were obtained using an algorithm model design. The Optimal Energy Mix of GSHP & DHC (OEMGD) algorithm was developed using a software program (Octave 4.0). The numerical result was able to reflect the variety of external influence factors through the OEMGD algorithm. The OEMGD model found that the DHC system is more economical than the GSHP system and was able to represent the optimal energy mix ratio and LCC of mixed energy systems according to changes in the external influences. The OEMGD algorithm could be of help to improve the consumers' experience and rationalize their energy usage.

A Study on the Enviromental Impact of District Heating System (지역난방의 환경개선효과 측정에 관한 연구)

  • Sonn, Yang-Hoon;Park, Joo Heon;Cho, Jun-Hyuk
    • Environmental and Resource Economics Review
    • /
    • v.10 no.3
    • /
    • pp.367-386
    • /
    • 2001
  • In this paper we analyze the environmental advantages of district heating system. We construct three econometric models to analyze the energy consumption and economic cost as well as the emission of the major pollutants like $SO_x$, $NO_x$, DUST, and $CO_2$. As the size of heating supply is larger, the district heating system is evaluated to be better than other heating systems environmentally and costly in the long run. Especially, the district heating reduces $SO_x$ emission significantly when the size of heat production is large. But the advantages of district heating system are very sensitive to the fuel mix and heat source.

  • PDF

The Analysis of Arc-Flow Interaction in GCB Using the Modified FLIC Method and the Arc Model (Modified FLIC법과 아크 모델을 이용한 차단부내 초기 아크 유동 해석)

  • Shin, Seung-Rok;Kim, Hong-Kyu;Jung, Hyun-Kyo
    • Proceedings of the KIEE Conference
    • /
    • 1999.07a
    • /
    • pp.366-368
    • /
    • 1999
  • In this paper, the analysis of the gas flow in the GCB is presented by using the modified FLIC method and the arc model. The modified FLIC method has two step calculation procedure. And it adopts the upwind scheme, which results in the stability.[1] The arc model used in this paper makes arc a heating source in the energy equation. The heating source is composed of ohmic heating and radiation energy transfer. And the type of the GCB in this paper is a auto-expansion type.[2]

  • PDF

Thermal Performance of Flat-strip Heat Pipe with Various Heat Source Locations (열원의 위치에 따른 평판형 히트파이프의 열적 성능)

  • Park, S.Y.;Boo, J.H.
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1406-1411
    • /
    • 2004
  • A series of experiments was conducted to examine characteristics of a grooved flat-strip heat pipe having multiple heat sources. The inner grooves of the heat pipe have the aspect ratio of 1 to $2.5(0.42{\times}1.05$ mm) whose pitch was 0.6 mm. Four block heaters ($10{\times}20$ mm) were placed in the evaporator section at intervals of 20 mm and six different heating modes were tested. The maximum surface heat flux of 80 $W/cm^2$ was achieved while the operating temperature was kept below $100^{\circ}C$, In the nearest heating mode (from the condenser location), the heat pipe exhibited more stable temperature distribution than the far heating mode where the heaters is located furthest from the condenser.

  • PDF

Analysis of Life Cycle Cost for Heat Source Equipments in Buildings for Adolescent Trainees (청소년 수련관의 열원설비 대안별 생애주기 비용에 관한 연구)

  • Ahn, Chang-hwan;Pang, Seung-ki;Baik, Yong-gyu
    • KIEAE Journal
    • /
    • v.5 no.3
    • /
    • pp.25-31
    • /
    • 2005
  • Computer simulations were performed for Heating Ventilating and Air-Conditioning (HVAC) systems to figure out more efficient maintenance methods for the building used for adolescent trainees. This study aims at suggesting design alternatives for optimum operation and performing life cycle cost (LCC) for each alternative. First, the capacity of the heat source equipment was determined using annual maximum heating and cooling loads. Annual loads were calculated and applied to the alternative for the purpose of calculating annual energy cost. Second, several types of data were collected to predict energy cost. Finally, the pay back period for each alternative was calculated using total cost estimation during standard duration period. This study indicates that the absorption chiller that does not occupy most part of a mechanical room, and does not need much operation cost was most economical.

Steady and Transient Solution of heat Conduction from hurried Pipes of panel heating Slab (상-파넬 히-팅의 해석법)

  • Lee Kun
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.3 no.3
    • /
    • pp.185-190
    • /
    • 1974
  • Floor panel heating system is popular in Korea as dwelling house heating system. There are two methods for keeping floor surface warm. One method is delivering warm air under the floor such as Roman Hypocaust and Korean traditional Ondol. The other method is imbedding hot water pipes into the concrete floor slab. This paper gives basic equations for steady and transient solutions of heat conduction from hurried pipes. For steady-state solution, fin Efficiency Method and Sink and Source Method were introduced. Sink and Source Method is applied to transient state and basic solution is given in the form of Exponential Integral Function. Numerical solutions can be solved easily by digital computer from these equations.

  • PDF

Application of the Riser Heating Equipment to Control Shrinkage defects for Casting of the Propeller (선박용 프로펠러 주조시 수축결함 제어용 압탕가열장치 적용)

  • Mun, Hyeon-Jun;Kim, Chung-Sup;Park, Tae-Dong;Lee, Dong-Jo;Yun, Seog-Hwan
    • Journal of Korea Foundry Society
    • /
    • v.28 no.2
    • /
    • pp.74-78
    • /
    • 2008
  • An integrated riser heating equipment has been developed to control shrinkage defects originated from casting of a marine propeller. The integrated riser heating equipment is composed of up/down moving parts, heating power source parts and an integrated controller. Heat capacity putting into the riser was calculated quantitatively on the base of a heat transfer analysis, which consisted of the establishment of heating model and the theoretical analysis for heat transfer. The riser heating equipment was evaluated through arc heating and electro-slag heating method. With the results, the arc type heating method was selected by considering high thermal efficiency, inexpensive cost, and convenient workship. This equipment improves the quality of a propeller casting and the poor working environment.

An Effect of Heat Input on Thermal Storage for Horizontal Thermal Storage Tank with Heat pipe (열 파이프용 수평 축열조에서의 열 입력이 축열에 미치는 영향)

  • Pak, Ee-Tong;Jeong, Un-Chul
    • Solar Energy
    • /
    • v.16 no.2
    • /
    • pp.39-47
    • /
    • 1996
  • The horizontal thermal storage tank with heat pipe which is suitable for the sensible heat storage system is able to store a hot water from the heat source such as heating pad efficiently and to supply a hot water to load rapidly. And arrangement of heating pad play an important role in thermal flow and thermal storage efficiency. In this experiments, number of heating pad is ranged from three, five and nine, and when there is no change on number of heating pad, arrangements are two types of concentration-type and dispersion-type. Strong entrainment take place in the case of concentration-type of heating pad, and rapid temperature rise(${\Delta}{\doteqdot}1.6{\sim}3.2^{\circ}C$) in the tank is obtainable on the concentration-type than dispersion-type. In the constant number of heating pad, the concentration-type has the higher efficiency with about $5{\sim}6%$ than the dispersion-type Therefore, concentration-type of heating pad is an efficient design in constant number of heating pad.

  • PDF

Characteristics of Solar Desalination System Using Refrigerant-123 As a Heating Source (R123 열원 적용 증발식 담수 시스템 특성 연구)

  • Yun, Sang-Kook;Kwak, Hee-Youl
    • Journal of the Korean Solar Energy Society
    • /
    • v.30 no.3
    • /
    • pp.33-38
    • /
    • 2010
  • The evaporative desalination system using solar thermal energy would be the efficient and attractive method to get fresh water from brine due to low carbon dioxide generation. In this research the solar desalination system as a heating source of refrigerant R123 in the evaporator was considered. The circulation of refrigerant in the evaporator can reduce the energy consumption of the system, because of using the latent heat of the refrigerant 123 instead of the sensible heat of present hot water. The system was comprised of the single-stage fresh water production unit on the capacity of 1ton/day with shell and tube type evaporator, heaters instead of solar collector to supply the proper heat to refrigerant, and refrigerant and brine circulation systems. Various operating flowrate and temperature ranges were varied in the experiments to get the optimum design data. The results showed that the optimum flow rate of brine feed rate to evaporator was 1.2Liter/min, and the yield of fresh water was increased as higher temperature of feed brine. It was confirmed that the circulation flowrate of heating source of refrigerant was decrease of one fifth of the present warm water system, and very efficient system for solar desalination.