• Title/Summary/Keyword: Heating power

Search Result 1,590, Processing Time 0.034 seconds

Development of exothermic system based on internet of things for preventing damages in winter season and evaluation of applicability to railway vehicles

  • Kim, Heonyoung;Kang, Donghoon;Joo, Chulmin
    • Smart Structures and Systems
    • /
    • v.29 no.5
    • /
    • pp.653-660
    • /
    • 2022
  • Gravel scattering that is generated during operation of high-speed railway vehicle is cause to damage of vehicle such as windows, axle protector and so on. Especially, those are frequently occurred in winter season when snow ice is generated easily. Above all, damage of vehicle windows has not only caused maintenance cost but also increased psychological anxiety of passengers. Various methods such as heating system using copper wire, heating jacket and heating air are applied to remove snow ice generated on the under-body of vehicle. However, the methods require much run-time and man power which can be low effectiveness of work. Therefore, this paper shows that large-area heating system was developed based on heating coat in order to fundamentally prevent snow ice damage on high-speed railway vehicle in the winter season. This system gives users high convenience because that can remotely control the heating system using IoT-based wireless communication. For evaluating the applicability to railroad sites, a field test on an actual high-speed railroad operation was conducted by applying these techniques to the brake cylinder of a high-speed railroad vehicle. From the results, it evaluated how input voltage and electric power per unit area of the heating specimen influences exothermic performance to draw the permit power condition for icing. In the future, if the system developed in the study is applied at the railroad site, it may be used as a technique for preventing all types of damages occurring due to snow ice in winter.

Estimation of Power Generation Capacity from Agricultural Biomass (농업부산물 부존량 조사 및 발전 가능량의 추정)

  • Hong, Seong-Gu
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.595-598
    • /
    • 2003
  • Elemental data was collected for agricultural biomass such as pruned branches with respect to unit area production and heating values. The results indicated that higher heating values for the biomass was comparable to those of woody biomass. Approximate estimations of power generation from biomass showed that over 100kW power plants could be installed in some districts.

  • PDF

Control techniques of transformer - SCR power regulator for heater temperature control (히터온도 제어용 변압기-SCR 전력변환장치 제어 기법)

  • Huynh, Anh-Tuan;Chun, Tae-Won;Lee, Hong-Hee
    • Proceedings of the KIPE Conference
    • /
    • 2019.07a
    • /
    • pp.265-266
    • /
    • 2019
  • This paper proposed a three-channel transformer-type power regulator to control the heater temperature by adjusting the voltage across the heater for pre-heating and the post-heating procedures of the material welding. The experimental results are carried out to verify the performance of three-channel heater temperature control for the heat treatment.

  • PDF

Fuel Cell-based Cogeneration System for Greenhouse Cooling and Heating (온실 냉난방을 위한 연료전지 기반 열병합 발전 시스템)

  • JIN YOUNG PARK;TUANANH BUI;SEUNGYONG PARK;DONGKEUN LEE;YONGGYUN BAE;YOUNGSANG KIM;SANG MIN LEE
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.34 no.6
    • /
    • pp.667-672
    • /
    • 2023
  • This study proposes polymer electrolyte membrane fuel cell (PEMFC) based cogeneration system for greenhouse heating and cooling. The main scope of this study is to examine the proposed cogeneration system's suitability for the 660 m2-class greenhouse. A 25 kW PEMFC system generates electricity for two identical air-cooled heat pumps, each with a nominal heating capacity of 70 kW and a cooling capacity of 65 kW. Heat recovered from the fuel cell supports the heat pump, supplying hot water to the greenhouse. In cooling mode, the adsorption system provides cold water to the greenhouse using recovered heat from the fuel cell. As a result, the cogeneration system satisfies both heating and cooling capability, performing 175 and 145 kW, respectively.

Thermodynamic Optimization of a Organic Rankine Power Cycle (유기 랭킨 사이클 시스템의 열역학적 최적화)

  • Lee, W.Y.;Won, S.H.;Chung, H.S.
    • Solar Energy
    • /
    • v.10 no.3
    • /
    • pp.35-45
    • /
    • 1990
  • An analytical equation to estimate the Rankine power cycle efficiency at maximum power for the given mass flow rates of heating and cooling fluids is derived. The accuracy of the result is shown by comparing the analytical values with those calculated one using detailed thermodynamic data. The results indicate that the thermal efficiency at maximum power depends primarily on the initial temperatures of the heating and cooling fluids, and it also depends on the pinch-temperature differences between the working fluid and the heating and cooling fluids. The efficiency at maximum power provides a measure of the power available in a practical Rankine heat engine.

  • PDF

Character of Induction Heating ZCS PWM SEPP High Frequency Inverter (유도가열용 ZCS PWM SEPP 고주파 인버터의 특성)

  • Mun, Sang-Pil;Kim, Chil-Ryong;Kwak, Dong-Kurl;Kim, Choon-Sam;Nakaoka, Mutsuo
    • Proceedings of the KIPE Conference
    • /
    • 2007.11a
    • /
    • pp.133-135
    • /
    • 2007
  • This research presented the new zero-current switching pulse width modulation SEPP(Single Ended Push-Pull)high frequency inverter for solving the problem of the zero-current SEPP high frequency inverter circuit which is using widely in the practical application of an induction heating apparatus, the soft switching operation and power control are impossible when the lowest power supply in the zero-current switching pulse width modulation SEPP high frequency inverter. The inverter circuit which is attempted by on-off operation of a switch has the reduction effect of the power loss due to a soft switching and a high frequency switching. And it confirmed that the power regulation is possible continuously from 0.25[kW] until 2.84[kW] in the case the duty rate(D) changes from 0.08 to 0.3 under zero-current switching operating by a dissymmetry pulse width modulating control and the power conversion efficiency comes true the efficiency of 95[%]. Due to the result above, the ZCS PWM SEPP high frequency inverter will be effective as sources of an induction heating apparatus.

  • PDF

A Novel Auxiliary Edge-Resonant Snubber-Assisted Soft Switching PWM High Frequency Inverter with Series Capacitor Compensated Resonant Load for Consumer Induction Heating

  • Ahmed Nabil A.;Iwai Toshiaki;Omori Hideki;Lee Hyun-Woo;Nakaoka Mutsuo
    • Journal of Power Electronics
    • /
    • v.6 no.2
    • /
    • pp.95-103
    • /
    • 2006
  • In this paper, a novel prototype of auxiliary switched capacitor assisted voltage source soft switching PWM Single-Ended Push Pull (SEPP) series capacitor compensated load resonant inverter with two auxiliary edge resonant lossless inductor snubbers is proposed and discussed for small scale consumer high-frequency induction heating (IH) appliances. The operation principle of this inverter is described by using switching mode equivalent circuits. The newly developed multi resonant high-frequency inverter using trench gate IGBTs can regulate its output AC power via constant frequency edge-resonant associated soft switching commutation by using an asymmetrical PWM control or duty cycle control scheme. The brand-new consumer IH products which use the newly proposed edge-resonant soft switching PWM-SEPP type series load resonant high-frequency inverters are evaluated using power regulation characteristics, actual efficiency vs. duty cycle and input power vs. actual efficiency characteristics. Their operating performance compared with some conventional soft switching high-frequency inverters for IH appliances is discussed on the basis of simulation and experimental results. The practical effectiveness of the newly proposed soft switching PWM SEPP series load resonant inverter is verified from an application point of view as being suitable for consumer high-frequency IH appliances.

Numerical Analysis in Unsteady State on variation of Diameter and Environmental Velocity of Carbon Heating Source (탄소발열체의 외부유속 및 직경변화에 대한 비정상상태에서의 수치해석적 연구)

  • Bae, K.Y.;Lee, Y.H.;Lee, S.Y.;Lee, C.S.;Kim, B.G.;Lee, S.H.
    • Journal of Power System Engineering
    • /
    • v.10 no.4
    • /
    • pp.25-30
    • /
    • 2006
  • This paper represents the numerical analysis in unsteady state on the variation of diameter and environmental velocity of carbon heating source. In general heating system, the oil and sheath heater is widely used, but these systems have many problems. So, the heating source with carbon ingredient has been researched in many country about manufacture, thermal and electrical properties. In this research, the carbon heating source was studied through numerical analysis on several conditions of unsteady state, heat generation, diameter and environmental velocity. The temperature distributions at steady state are appeared as a non-proportional linear pattern with variations of environmental velocity due to the Nesselt number with convective heat flux is proportioned to 0.805 of Reynolds number. As the radius is increasing, the temperature distributions is appeared the minus tilt because of the environmental condition is cooling by constant temperature. So, the correlation equation between temperature at steady state and environmental velocity was obtained.

  • PDF

A study on the availability of underground air for heating/cooling energy in volcano-stratigraphic (화산지질층 지하공기 열원 이용 가능성에 관한 연구)

  • Kim, Yong-Hwan;Kim, Sung-Man;Lee, Dong-Won;Hyun, Myun-Taek
    • Journal of Power System Engineering
    • /
    • v.17 no.6
    • /
    • pp.136-141
    • /
    • 2013
  • This study introduces and analyzes the energy for heating and cooling system in region with volcano-stratigraphic. The thermodynamic properties of air through the air blower installed at the entrance of borehole are measured. It estimates the availability of underground air for heating and cooling system through experimental data and theoretical analysis. Based on our conclusion from these calculations we predict possibility of over 40kW steady and stable energy source from underground. Therefore this underground air can be utilized in region with volcano-stratigraphic.

Thermal Performance Assessment of Wet Ondol and Electric Ondol System (습식온돌시스템과 전기온돌시스템의 열성능 평가)

  • Han, Byung-Jo;Koo, Kyung-Wan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.1
    • /
    • pp.214-220
    • /
    • 2011
  • This paper studies about the assessment of thermal performance between wet ondol system and electric ondol system. Electrical ondol systems shows faster warm-up time, higher floor surface temperature distribution and lower power consumption than wet ondol system. However, if we provide heat regularly wet ondol system which has more heat capacity shows greater thermal storage than electric ondol system. Therefore, we could conclude that wet ondol system which keeps temperature regularly by the thermal storage show better energy-efficiency in case of using the central heating and district heating system. However, Electrical ondol system shows better efficiency in case of using the space during short time or individual heating systems which needs to heat quickly. The Experiment says that electric ondol system has more benefits on timing to reach the set temperature and energy-efficiency than wet ondol system.