• Title/Summary/Keyword: Heating energy

Search Result 3,227, Processing Time 0.027 seconds

A Study on the Baseline Load Estimation Method using Heating Degree Days and Cooling Degree Days Adjustment (냉난방도일을 이용한 기준부하추정 방법에 관한 연구)

  • Wi, Young-Min
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.5
    • /
    • pp.745-749
    • /
    • 2017
  • Climate change and energy security are major factors for future national energy policy. To resolve these issues, many countries are focusing on creating new growth industries and energy services such as smartgrid, renewable energy, microgrid, energy management system, and peer to peer energy trading. The financial and economic evaluation of new energy services basically requires energy savings estimation technologies. This paper presents the baseline load estimation method, which is used to calculate energy savings resulted from participating in the new energy program, using moving average model with heating degree days (HDD) and cooling degree days (CDD) adjustment. To demonstrate the improvement of baseline load estimation accuracy, the proposed method is tested. The results of case studies are presented to show the effectiveness of the proposed baseline load estimation method.

Growth Characteristics of Cherry Tomato in Greenhouse using Far Infrared Heating Systems (원적외선 난방시스템이 방울토마토 생육에 미치는 영향)

  • Kim, H.J.;Li, H.;Kang, T.H.;Ning, X.F.;Han, C.S.;Cho, S.C.
    • Journal of Biosystems Engineering
    • /
    • v.34 no.3
    • /
    • pp.161-166
    • /
    • 2009
  • This study was conducted to investigate the growth characteristics of cherry tomatoes in greenhouse using far infrared heating system. The far infrared greenhouse heating systems were installed in two ways on the greenhouse side wall and at the greenhouse ceiling. The heating characteristics of far infrared heating system were analyzed by investigating the heating load, internal temperature, energy consumption, growth characteristics and quality evaluation. The results were compared with heated air heating system using kerosene. The results showed that tomatoes grown in the greenhouse with the far infrared heating system had relatively better plant height, leaf length, leaf width, stem diameter than ones from the greenhouse with hot air heating system and both heating methods had no significant difference on Cherry tomato sugar contents. At the same time, the far infrared heating system reduced heating cost from 34.5 to 41.4% on comparing with hot air heating system.

The Development and Performance Analysis of Compact Type Solar Thermal/Ground Coupled Heat Pump Hybrid System for Heating, Cooling and Hot water (콤팩트형 태양열/지열히트펌프 하이브리드 냉난방 및 급탕 시스템 개발 및 성능분석)

  • Baek, Nam-Choon;Jeong, Seon-Yeong;Yoon, Eung-Sang;Lee, Kyoung-Ho
    • Journal of the Korean Solar Energy Society
    • /
    • v.32 no.5
    • /
    • pp.59-67
    • /
    • 2012
  • In this study,the compact type solar thermal and ground coupled heat pump hybrid system for space heating/cooling and hot water supply has been developed. This hybrid system was installed in Zero Energy Solar House(ZeSH) in KIER for the demonstration. The thermal performance and operational characteristics of this hybrid system were analysed especially. The results are as follows. (1) This hybrid system was designed in order to address the existing disadvantages of solar thermal/ground coupled heat pump system. For this design, all parts except solar collector and ground coupled heat pump were integrated into a single product in a factory. The compact type unit includes two buffer tanks, an expansion tank, pumps, valves, a controller, etc. This system has an advantage of easy installation with simple plumbing work even in narrow space. (2) The thermal charging and discharging time of the buffer tanks and its characteristics by ground coupled heat pump, and heat pump COP according to geo-source temperature and buffer storage temperature have been studied. This system was found to meet well to the heat load without any other auxiliary heating equipment. (3) The operating hours of the ground coupled heat pump as a backup device of solar thermal can be reduced significantly by using solar heat. It was also found that the minimum heating water supply setting temperature and maximum cooling water supply setting temperature make an influence on the heat pump COP. The lower heating water and the higher cooling water temperature, the higher COP. In this respect, the hybrid system's performance can be improved in ZeSH than conventional house.

Insulation Performance and Heating and Cooling Energy Consumption depending on the Window Reveal Depth in External Wall Insulation (외단열 벽체에서 창호 설치 위치에 따른 단열성능 및 냉난방 에너지 소비량)

  • Rhee, Kyu-Nam;Jung, Gun-Joo
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.33 no.12
    • /
    • pp.91-98
    • /
    • 2017
  • In this study, the effect of window installation position in the residential building with the external insulation was numerically investigated in terms of insulation performance and heating/cooling energy consumption. For different window positions, 2-D heat transfer simulation was conducted to deduce the linear thermal transmittance, which was inputted to the dynamic energy simulation in order to analyze heating/cooling energy consumption. Simulation results showed that the linear thermal transmittance ranges from 0.05 W/mK to 0.7 W/mK, and is reduced as the window is installed near the external finish line. Indoor surface temperature and TDR analysis showed that the condensation risk is the lowest when the window is installed at the middle of the insulation and wall structure. It was also found that the window installation near the external finish can reduce the annual heating/cooling energy consumption by 12~16%, compared with the window installation near the interior finish. Although the window installation near the external finish can achieve the lowest heating/cooling energy consumption, it might lead to increased condensation risks unless additional insulation is applied. Thus, it can be concluded that the window should be installed near the insulation-wall structure junction, in consideration of the overall performance including energy consumption, condensation prevention and constructability.

An Analysis of Heating and Cooling Loads by Insulated Shades and Control Method in an Energy Saving Apartment (에너지절약형 주택에서의 단열차양 적용과 제어방법에 따른 냉난방부하 분석)

  • Park, Sun-Hyo;Kwon, Kyung-Woo;Sohn, Jang-Yeul
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.6
    • /
    • pp.392-397
    • /
    • 2010
  • Energy loss from windows accounts for large scores of heating and cooling loads also in energy saving apartments that is reduced over 30% of total energy consumption. Movable reflective insulations, insulation shutters, blinds, insulated shades are used to reduce energy loads from windows. In this study, energy saving performance of insulated shades was simulated by control methods. According to installation of insulated shades, heating loads were decreased about 10.5~11.3%, and cooling loads are decreased about 29.1~38.3% on an energy saving apartment. The heating peak load was reduced about 9.5% by insulated shades and the cooling peak load was reduced about 25.7~31.5%. In the case of insulated shades with automatic control system, simple time schedule control system would be more efficient than outdoor detection control system that should use several sensors.

A Study on the Fabrication of Surface Heating Panel Using SiC Ceramics (SiC계 세라믹을 이용한 면상발열 판넬 개발에 관한 연구)

  • Cho, Hyun-Seob
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.9 no.6
    • /
    • pp.604-608
    • /
    • 2016
  • In recent years, research and development has been carried out in order to increase the economical efficiency and stability in terms of efficient use of energy for the heating apparatus. Especially, technology development for high performance and new functional materials is actively being carried out. This paper focuses on the development of exothermic products with excellent energy transfer characteristics. The heating element used for bedding or mattress uses a heating wire. Since the heating wire is thin, the distribution of heat is concentrated only around the heating wire,. In addition, electromagnetic induction is harmful to the human body and energy consumption is high. Therefore, it is aimed to develop a planar heating panel using SiC ceramics which can radiate far-infrared rays and anions to be harmless to the human body, but also has excellent heat conduction to enhance energy efficiency.

Power Generation and Control System Using Differential Pressure of District Heating Pipeline in a Substation (지역난방 사용자기계실 내 열수송관 차압을 이용한 발전 및 제어 기술)

  • Kim, Kyung Min;Park, Sung Yong;Oh, Mun Sei
    • Journal of Energy Engineering
    • /
    • v.26 no.3
    • /
    • pp.90-96
    • /
    • 2017
  • When the hot water is supplied through the district heating (DH) pipeline, a pressure differential control valve (PDCV) protects the DH user equipment from the high pressure DH water and helps to supply DH water to long distance. It also controls the temperature and adjust the pressure in the main district heating pipeline. However, cavitation occurs in PDCV due to the use of high pressure DH water. It causes frequent failures and many problems. It also causes energy loss and complaints to both operators and users. In order to solve these problems, we will introduce the energy saving technology to replace the primary side PDCV with hydraulic turbine, convert the differential pressure into electricity, and utilize electricity as the power of the secondary side pump.

A Study on Residents' Acceptance of Unutilized Heat in District Heating (미활용 열에너지의 집단에너지 주민 수용성에 관한 연구)

  • Doo Hwan Won;Saesin Oh
    • Environmental and Resource Economics Review
    • /
    • v.32 no.3
    • /
    • pp.191-215
    • /
    • 2023
  • This study focuses on evaluating and comparing residents' acceptance of unutilized heat such as hydrothermal energy and waste heat from waste incineration and data centers in the case that they are used as district heat sources. This is because securing residents' acceptance is significantly important in order for unutilized heat to be considered as a heat source of district heating and cooling to achieve neutrality in the heating and cooling sector. A survey of heating consumers' perception on unutilized heat energy is conducted and a conjoint model is used to analyze the willingness to pay of heating consumers on incineration heat, water heat, and data center waste heat and to compare them with existing gas heat sources. As a result of the analysis, it is confirmed that district heating using hydrothermal energy and data center waste heat is preferred to district heating from heat from a natural gas plant or waste incineration.

Analysis of Long-term Thermal Performance of Solar Thermal System Connected to District Heating System (지역난방 적용 태양열시스템의 장기 열성능 분석)

  • Baek, Nam-Choon;Shin, U-Cheul
    • Journal of the Korean Solar Energy Society
    • /
    • v.27 no.4
    • /
    • pp.167-173
    • /
    • 2007
  • This study analyzed by simulation using TRNSYS as well as by experiment on the solar district heating system installed for the first time for the district heating system in Bundang. Simulation analysis using TRNSYS focused on the thermal behavior and long-term thermal efficiency of solar system. Experiment carried out for the reliability of simulation system. This solar system where the circuits of two different collectors, flat plate and vacuum tube collector, are connected in series by a collector heat exchanger, and the collection characteristics of each circuit varies. Therefore, these differences must be considered for the system's control. This system uses variable flow rate control in order to obtain always setting temperature of hot water by solar system. Specifically, this is a system that heats returning district heating water (DHW) at approximately $60^{\circ}C$ using a solar collector without a storage tank, up to the setting temperature of approximately $85{\sim}95^{\circ}C$ To realize this, a flat plate collector and a vacuum tube collector are used as separate collector loops. The first heating is performed by a flat plate collector loop and the second by a vacuum tube collector loop. In a gross collector area basis, the mean system efficiency, for 4 years, of a flat plate collector is 33.4% and a vacuum tube collector is 41.2%. The yearly total collection energy is 2,342GJ and really collection energy per unit area ($m^2$) is 1.92GJ and 2.37GJ respectively for the flat plate vacuum tube collector. This result is very important on the share of each collector area in this type of solar district heating system.

Influence on the Thermal Environment by Change of Indoor-air Volume of Plastic Greenhouse with Hot Air Heating Systems (온풍난방을 채용한 3연동 플라스틱 하우스의 실내공기용적 변화가 하우스 온열환경에 미치는 영향)

  • Jeon, Sam-Chae;Li, Chang-Su;Na, Su-Yeun;Huh, Jong-Chul;Choi, Dong-Ho
    • Journal of the Korean Solar Energy Society
    • /
    • v.22 no.3
    • /
    • pp.1-10
    • /
    • 2002
  • Relatively being economical in installation and easy in operation, hot-air heating system has been generally used in greenhouse for heating system regardless of high cost in maintenance and uneven distribution of air temperature. Therefore to overcome the disadvantages in maintenance and in distribution of air temperature and to improve efficiency of heating system, this experimental study is performed. This experimental study aims to improve the character of uneven temperature distribution in vertical direction and to reduce energy consumption for heating in a greenhouse. The experiment had been performed to investigate change of thermal environment and effects on reducing energy consumption for heating in greenhouse by additional surface insulation and reduction of indoor-air volume that come by installing transparent vinyl membranes with different height in each house. The results show that there is a wide difference in oil-energy consumption between houses according to condition of surface insulation and change of indoor-air volume. Furthermore, the results show that the efficiency of dual surface is higher than that of change of indoor-air volume in terms of energy saving.