• Title/Summary/Keyword: Heating devices

Search Result 330, Processing Time 0.021 seconds

The Study on High-Frequency Switching Drive Method Using IGBT For Non-Magnetic Induction Heating System (비자성 유도가영시스템을 위한 IGBT를 이용한 고속스위칭 구동에 관한 연구)

  • 김정태;권경안;정윤철;박병욱
    • Proceedings of the KIPE Conference
    • /
    • 1998.07a
    • /
    • pp.24-26
    • /
    • 1998
  • A new high frequency switching drive method using IGBT is proposed for non-magnetic induction heating system. Using this method, the switching and conduction losses of the switching devices can be reduced. In addition, since IGBT cosl is lower than MOS-FET one, the system cosl can be remarkably pared down. The prototype induction heating system with 1.2㎾ power consumption is builted and tested to verify the operation of the proposed high frequency switching drive method.

  • PDF

The Reduction of Energy Consumption by the Exterior Horizontal Shading Device during Design for the Retrofit of Public Buildings (공공청사 리트로핏 설계 시 외부 수평 차양 장치에 따른 에너지 소비량 절감 방안)

  • Auh, Jin Sun;Jang, Ji-Hoon;Leigh, Seung-Bok;Kim, Byungseon Sean
    • KIEAE Journal
    • /
    • v.17 no.2
    • /
    • pp.29-34
    • /
    • 2017
  • Purpose: Recently, significant heat loss through the window takes place in buildings. Nevertheless, there exists little literature concerning the exterior horizontal shading devices and the design criteria are not clearly settled yet. Applying the exterior horizontal shading devices is more efficient as compared to the interior shading devices in that solar radiation can be directly blocked before passing through the window or the envelope. The purpose of this study is to reduce the internal load by designing the exterior horizontal shading devices and verify the degree of reduction in energy consumption. Method: This study aims to reduce energy consumption in cooling and heating through proposing proper length and shape of the exterior horizontal shading devices in public buildings. In the process, actual energy data and the Design Builder simulation program are utilized. In addition, economic aspect is considered to figure out the optimal length of the exterior horizontal shading devices that maximizes efficiency. Result: As a result, the proper length and shape of the exterior horizontal shading devices are provided as follows: 1) Energy consumption in cooling and heating is minimized when the exterior horizontal shading devices are designed as 0.5m*2. 2) Electricity bill is the lowest when the exterior horizontal shading devices are designed as 3.3m*2. The gap between maximum and minimum electricity bill is about 7.8~14%.

Analysis of Heating Energy in a Korean-Style Apartment Building 3 : The Effect of Room Condition Settings (한국형 아파트의 난방에너지 분석 3 :실내설정조건의 영향)

  • Park, Yoo-Won;Yoo, Ho-Seon;Hong, Hi-Ki
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.8
    • /
    • pp.722-728
    • /
    • 2005
  • The present paper deals with heating energy estimation in Korean-style apartments, paying special attention to the effect of room condition settings. Two types of heating modes are considered: continuous single-zone and scheduled multi-zone. In the latter, zones during unoccupied periods remain unconditioned. Also analyzed are sensitivities in heating energy with respect to the air change rate and the set temperature. The energy use is estimated with TRNSYS 15, a dynamic load calculation program. Heating energy for the actual residential condition (1.0 ACH and $24^{\circ}C$) appears to be nearly the same as that for a typical design standard (1.5 ACH and $20^{\circ}C$). The air change rate affects heating energy as sensitive]y as the set temperature. For all the simulated cases, the scheduled multi-zone heating mode is more energy-efficient than the continuous single-zone. Heating energy depends appreciably on the shading factor. It is expected that considerable heating energy for apartment houses can be saved by employing a multi-zone mode along with appropriate control devices.

AN INTRODUCTION TO SEMICONDUCTOR INITIATION OF ELECTROEXPLOSIVE DEVICES

  • Willis K. E.;Whang, D. S.;Chang, S. T.
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 1994.11a
    • /
    • pp.21-26
    • /
    • 1994
  • Conventional electroexplosive devices (EED) commonly use a very small metal bridgewire to ignite explosive materials i.e. pyrotechnics, primary and secondary explosives. The use of semiconductor devices to replace “hot-wire” resistance heating elements in automotive safety systems pyrotechnic devices has been under development for several years. In a typical 1 amp/1 watt electroexplosive devices, ignition takes place a few milliseconds after a current pulse of at least 25 mJ is applied to the bridgewire. In contrast, as for a SCB devices, ignition takes place in a few tens of microseconds and only require approximately one-tenth the input energy of a conventional electroexplosive devices. Typically, when SCB device is driven by a short (20 $\mu\textrm{s}$), low energy pulse (less than 5 mJ), the SCB produces a hot plasma that ignites explosive materials. The advantages and disadvantages of this technology are strongly dependent upon the particular technology selected. To date, three distinct technologies have evolved, each of which utilizes a hot, silicon plasma as the pyrotechnic initiation element. These technologies are 1.) Heavily doped silicon as the resistive heating initiation mechanism, 2.) Tungsten enhanced silicon which utilizes a chemically vapor deposited layer of tungsten as the initiation element, and 3.) a junction diode, fabricated with standard CMOS processes, which creates the initial thermal environment by avalanche breakdown of the diode. This paper describes the three technologies, discusses the advantages and disadvantages of each as they apply to electroexplosive devises, and recommends a methodology for selection of the best device for a particular system environment. The important parameters in this analysis are: All-Fire energy, All-Fire voltage, response time, ease of integration with other semiconductor devices, cost (overall system cost), and reliability. The potential for significant cost savings by integrating several safety functions into the initiator makes this technology worthy of attention by the safety system designer.

  • PDF

A Study on the Design of Smart Farm Heating Performance using a Film Heater (필름 히터를 이용한 스마트 팜 난방 성능 설계에 관한 연구)

  • W. Kim
    • Transactions of Materials Processing
    • /
    • v.32 no.3
    • /
    • pp.153-159
    • /
    • 2023
  • This paper presents the optimal design of a heating system using radiant heating elements for application in smart farms. Smart farming, an advanced agricultural technology, is based on artificial intelligence and the internet of things and promotes crop production. Temperature and humidity regulation is critical in smart farms, and thus, a heating system is essential. Radiant heating elements are devices that generate heat using electrical energy. Among other applications, radiant heating elements are used for environmental control and heating in smart farm greenhouses. The performance of these elements is directly related to their electrical energy consumption. Therefore, achieving a balance between efficient electrical energy consumption and maximum heating performance in smart farms is crucial for the optimal design of radiant heating elements. In this study, the size, electrical energy supply, heat generation efficiency, and heating performance of radiant heating elements used in these heating systems were investigated. The effects of the size and electrical energy supply of radiant heating elements on the heating performance were experimentally analyzed. As the radiant heating element size increased, the heat generation efficiency improved, but the electrical energy consumption also increased. In addition, increasing the electrical energy supply improved both the heat generation efficiency and heating performance of the radiant heating elements. Based on these results, a method for determining the optimal size and electrical energy supply of radiant heating elements was proposed, and it reduced the electrical energy consumption while maintaining an appropriate heating performance in smart farms. These research findings are expected to contribute to energy conservation and performance improvement in smart farming.

Unidirectional Sintering in LTCC Substrate (LTCC 기판의 일 방향 소결)

  • Sun Yong-Bin;Ahn Ju-Hwan;Kim Seuk-Buom
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.11 no.4 s.33
    • /
    • pp.37-41
    • /
    • 2004
  • As mobile communication devices use wide bands for large data transmission, Low Temperature Co-fired Ceramic(LTCC) has been a candidate for module substrate, for it provides better electrical properties and enables various embedded passive devices compared to conventional PCB. The LTCC, however, has applied in limited area because of non-uniform shrinkage. Hybrid heating was developed to raise sample temperature uniformly in a short period of time This leads to unidirectional sintering which enables sample to be sintered layer by layer from the bottom, resulting in more stable shape of interconnection at the top surface of the sample than conventional electric furnace heating. When sintering properties of substrate and electrical/mechanical properties of interconnection were compared, hybrid heating showed possibility to be applicable to substrate miniaturization and interconnection densification superior to electric furnace heating.

  • PDF

Study on Optimization for Heating System of Sequential Feed-Type Mobile Smart Device Cover Glass Molding Machine (모바일 스마트 기기 덮개 유리 순차이송형 성형기기의 가열시스템 최적화에 관한 연구)

  • Lee, Jun Kyoung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.14 no.5
    • /
    • pp.75-80
    • /
    • 2015
  • Nowadays, flat-shaped cover glass is widely used for mobile devices. However, for its good design and convenience of use, curved cover glass has been demanded. Thus, many companies have tried to produce curved cover glass through the shaving technique, but the production efficiency is very low. Therefore, the molding technique has been adopted to increase the efficiency for the curved-glass production system. For a glass-molding system, several heating blocks are installed, and the flat cover glass is sequentially heated and molded. The production time for the cover glass is very different depending on the heating conditions; thus, the prediction of the production time for different heating conditions should be needed. Therefore, in this study, the computations were performed with different heating conditions (uniform and non-uniform) in the present cover glass-molding machine. For uniform and non-uniform heating conditions, the simple correlation between the heating time and the heater capacity and the heating time to achieve higher durability can be suggested, respectively.

Analysis of energy and daylight performance of adjustable shading devices in region with hot summer and cold winter

  • Freewan, Ahmed A.;Shqra, Lina W.
    • Advances in Energy Research
    • /
    • v.5 no.4
    • /
    • pp.289-304
    • /
    • 2017
  • Large glazed surfaces and windows become common features in modern buildings. The spread of these features was influenced by the dependence of designers on mechanical and artificial systems to provide occupants with thermal and visual comfort. Countries with hot summer and cold winter conditions, like Jordan, require maximum shading from solar radiation in summer, and maximum exposure in winter to reduce cooling and heating loads respectively. The current research aims at designing optimized double-positioned external shading device systems that help to reduce energy consumption in buildings and provide thermal and visual comfort during both hot and cold seasons. Using energy plus, a whole building energy simulation program, and radiance, Lighting Simulation Tool, with DesignBuilder interface, a series of computer simulations for energy consumption and daylighting performance were conducted for offices with south, east, or west windows. The research was based on comparison to determine the best fit characteristics for two positions of adjustable horizontal louvers on south facade or vertical fins on east and west facades for summer and winter conditions. The adjustable shading systems can be applied for new or retrofitted office or housing buildings. The optimized shading devices for summer and winter positions helped to reduce the net annual energy consumption compared to a base case space with no shading device or with curtains and compared to fix shading devices.

A Study on the Analysis of Fire Mechanisms in Electronic Products due to Failure and Malfunction of Thermostats Through Fire Cases and Reproduction Experiments (화재사례 및 재현실험을 통한 온도조절장치 고장 및 오동작으로 인한 전자제품 화재 메커니즘 분석)

  • Jeong-il Lee;Jong-Hwa Im
    • Journal of the Korea Safety Management & Science
    • /
    • v.26 no.1
    • /
    • pp.31-38
    • /
    • 2024
  • In this paper, as there are many cases of fires occurring due to the failure or inoperability of the thermostat of electronic products, the purpose is to test and analyze the risks and probabilities through fire cases and reproduction experiments, and suggest countermeasures. Among electronic products, water purifiers are composed of a refrigerant system with a compressor to make cold water, a heating device to make hot water, and an electric device used as an energy source. Due to the nature of the water purifier manufacturing, these devices are subject to a lot of moisture and dust. etc. exist in large quantities and use electrical energy, so there is a possibility of fire due to short circuit in the wire, electrical abnormal overheating (tracking phenomenon) in the thermostat, electronic board, starting relay, etc., and overheating of the heating device (Band Heater). there is. Therefore, in order to prevent fires from these devices, a system to remove foreign substances inside the water purifier is necessary, the use of heat-resistant (fire-resistant) wires for electrical devices is essential, and the use of non-combustible materials (semi-combustible materials) for each part is necessary to prevent fire. The risk must be eliminated through prevention and combustion expansion prevention devices.

A 15 nm Ultra-thin Body SOI CMOS Device with Double Raised Source/Drain for 90 nm Analog Applications

  • Park, Chang-Hyun;Oh, Myung-Hwan;Kang, Hee-Sung;Kang, Ho-Kyu
    • ETRI Journal
    • /
    • v.26 no.6
    • /
    • pp.575-582
    • /
    • 2004
  • Fully-depleted silicon-on-insulator (FD-SOI) devices with a 15 nm SOI layer thickness and 60 nm gate lengths for analog applications have been investigated. The Si selective epitaxial growth (SEG) process was well optimized. Both the single- raised (SR) and double-raised (DR) source/drain (S/D) processes have been studied to reduce parasitic series resistance and improve device performance. For the DR S/D process, the saturation currents of both NMOS and PMOS are improved by 8 and 18%, respectively, compared with the SR S/D process. The self-heating effect is evaluated for both body contact and body floating SOI devices. The body contact transistor shows a reduced self-heating ratio, compared with the body floating transistor. The static noise margin of an SOI device with a $1.1\;{\mu}m^2$ 6T-SRAM cell is 190 mV, and the ring oscillator speed is improved by 25 % compared with bulk devices. The DR S/D process shows a higher open loop voltage gain than the SR S/D process. A 15 nm ultra-thin body (UTB) SOI device with a DR S/D process shows the same level of noise characteristics at both the body contact and body floating transistors. Also, we observed that noise characteristics of a 15 nm UTB SOI device are comparable to those of bulk Si devices.

  • PDF