• Title/Summary/Keyword: Heating and cooling load

Search Result 383, Processing Time 0.029 seconds

The Simulation Approach for the Optimal Design of Small Scale District Heating and Cooling System (소규모 지역냉난방 시스템 최적설계 시뮬레이션)

  • Im, Yong-Hoon;Park, Hwa-Choon;Cho, Soo;Jang, Cheol-Yong;Chung, Mo
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2008.11a
    • /
    • pp.147-154
    • /
    • 2008
  • A simulation program is developed for the optimal design of small scale district heating and cooling system. Main features for the simulation program are the reliability and the easiness for the optimal design of the DHC(District Heating and Cooling) systems. In order for implementing those features, the operational characteristics according to the prime movers is modeled based on the materials of efficiency as a function of operational load. The unit energy load model is also developed extensively for several building types, of which the corresponding district consist, such as apartment complex, hotel, hospital, buildings for business and commercial use respectively. The specific features and the overall procedure of the simulation are described in brief in this paper. The results of the simulation for several test cases will be presented in subsequent study.

  • PDF

The Impact of Internal heat gain on heating and Cooling Load in Curtain Wall Office Buildings (커튼월 사무소용 건물에서 실내발열이 냉난방 부하에 미치는 영향)

  • Kim, Jeong-Yoon;Yook, In-Soo;Nam, Hyun-Jin;Lee, Jin-Sung;Kim, Jae-Min;Cho, Soo
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.925-930
    • /
    • 2008
  • As office automation appliances and communication equipments are adopted in office buildings, internal heat gains increase gradually. When making simulation model, internal heat gains are usually set up with standard values or ignored. Therefore, the impact of the internal heat gains has been ignored or not been focused although it is recognised as significant contributor to heating/cooling load of buildings. This study focused on the impact of internal heat gains on curtain wall buildings. the amount and schedules of heat internal gains profiles not only affect the profiles of heating/cooling loads, but also make impact on reducing the effectiveness of high performance glazing systems. It is important to identify internal heat gains profiles before considering the installation of high performance glazing systems.

  • PDF

Cooling Performance Analysis of Solar Heating and Cooling System in an Office Building (사무소 건물 적용 태양열냉난방시스템의 냉방성능 분석)

  • Jang, Jae-Su;Ko, Myeong-Jin;Kim, Yong-Shik
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2011.04a
    • /
    • pp.217-222
    • /
    • 2011
  • This study examined the cooling performance of a solar heating and cooling system for an office building using the dynamic simulation program (TRNSYS). This solar heating and cooling system incorporates evacuated tube solar collectors of $204m^2$, storage tank of $8m^3$, 116.2kW auxiliary heater, single-effect $LiBr/H_2O$ absorption chiller of 20RT nominal cooling capacity. It was found that for the representing day showed peak cooling load the annual average collection efficiency of the collector was 32.9% and coefficient of performance of single-effect $LiBr/H_2O$ absorption chiller was 0.68. And the results shows for the cooling season the solar fraction of the solar heating and cooling system was 32.2% and maximal and minimal solar fraction was 63.4% for May 17.9% for July respectively.

  • PDF

Basic research on the Building Energy Load Depending on The Climate Change in Korea (대한민국 표준기상데이터의 변화추이와 건물부하량에 관한 기초연구)

  • Yoo, Ho-Chun;Lee, Kwan-Ho;Kang, Hyun-Gu
    • Journal of the Korean Solar Energy Society
    • /
    • v.29 no.3
    • /
    • pp.66-72
    • /
    • 2009
  • As 'Low Carbon Green Building' is highly required, programs to evaluate building performance are actively and commonly used. For most of these programs, dynamic responses of buildings against external weather changes are very important. In order to simulate the programs, weather data of each region must be properly entered to estimate accurate amount of building energy consumption. To this end, the existing weather data and weather data of KSES were compared and analyzed to find out how weather changes. Energy load of Korea's standard houses was also analyzed based on this data. As a result, data corresponding to June ${\sim}$ September when cooling is supplied shows 23% of average increase with 30% of peak increase(June). On the other hand, data corresponding to November ${\sim}$ February when heating is supplied shows 29% of average decrease with 34% of peak decrease(November). Increase in cooling load and decrease in heating load in the above data comparison/analysis show that KSES 2009 data reflects increase in average temperature caused by global warming unlike the existing data. Increase in dry-bulb temperature depending on weather change of standard houses increases cooling load by 17% and decreases heating load by 36%

Performance Evaluation of the Capillary Tube Radiant Floor Cooling & Heating System (모세유관 바닥복사 냉·난방 시스템의 성능평가)

  • Seo, Yu-jin;Kim, Taeyeon;Leigh, Seung-bok
    • KIEAE Journal
    • /
    • v.12 no.4
    • /
    • pp.89-95
    • /
    • 2012
  • At present, many countries are trying to reduce green gas emissions to mitigate the effects of these gases on climate change. Year after year, there have been efforts to cut energy use for heating and cooling. Heating and cooling systems, common in all forms of housing, are increasing due to the constant supply of new housing resulting from improvements in economic growth and the quality of life. Thus, studies related to the design of cooling and heating systems to improve energy efficiency are expanding. Among the new designs, radiant floor cooling and heating systems which use capillary tubes are becoming viable means of reducing energy use. Radiant floor cooling and heating systems which use capillary tubes are creative and sustainable systems in which cool and hot water is circulated into capillary tube which has small diameter. In this study, the cooling and heating performance of this type of capillary tube system is investigated in an experimental study and a simulation using TRNSYS. The results of the experimental study show that under a peak load, a capillary tube radiant floor cooling system using geothermal energy can achieve desired indoor temperature without an additional heat source. The set room air temperature is maintained while the floor surface temperature, PMV and PPD remain within the comfort range. Also, this system is more economic than a packaged air conditioner system due to its higher COP. The results of the simulation show that the capillary tube radiant floor heating system maintains set temperature more stable than a PB pipe radiant floor heating system due to its lower supply temperature of hot water. In terms of energy consumption, the capillary tube radiant floor heating system is more efficient than the PB pipe radiant floor heating system.

Experimental Study on the Cooling and Heating Characteristics of System A/C Applying the Digital Scroll Compressor (디지털 스크롤 압축기를 적용한 시스템 에어컨의 냉난방특성에 대한 실험적 연구)

  • Jeon, Yong-Ho;Kim, Dae-Hoon;Kwon, Young-Chul;Jang, Geun-Sun;Lee, Yoon-Soo;Moon, Je-Nyung;Yoon, Baek;Hong, Ju-Tae
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.6
    • /
    • pp.454-460
    • /
    • 2003
  • In order to investigate the cooling and heating characteristics of a variable-capacity system A/C applying a digital scroll compressor, the cooling and heating capacities and COP are measured by the psychrometric calorimeter. The capacity of the system is controlled by the digital scroll compressor, which is operated by controling PWM valve and the loading vs. unloading time. In the case of unloading compared that of loading, the consumption power of the compressor is about 11% and the capacity variation of the system A/C is within about 1%. When the system A/C is operated under the cooling and heating standard conditions, COP is nearly uniform but cooling capacity and heating capacity increase at minimum, rated and maximum modes. The system A/C applying the digital scroll compressor is effective for the range with high load or the width of large load variation. When the auxiliary heater is on, at the cold region, the system A/C produces the excellent heating capacity.

Experimental Study on the Performance Improvement of a Simultaneous Heating and Cooling Heat Pump in the Heating-main Operating Mode (난방주체 운전모드에서의 동시냉난방 열펌프 성능향상에 관한 실험적 연구)

  • Kang, Hoon;Jung, Hyen-Joon;Joo, Young-Ju;Kim, Yong-Chan;Choi, Jong-Min
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.4
    • /
    • pp.245-251
    • /
    • 2008
  • The cooling load in winter is significant in buildings and hotels because of the usage of office equipments and the high efficiency of wall insulation. Hence, the development of a multi-heat pump that can cover heating and cooling simultaneously for each indoor unit is required. In this study, the operating characteristics and performance of a simultaneous heating and cooling heat pump in the heating-main operating mode were investigated experimentally. The system adopted a variable speed compressor with four indoor units and one outdoor unit with R-410A. In the heating-main mode, the cooling capacity was lower than the design cooling capacity due to the reduction of the flow rate in the indoor unit for the cooling, with the increase of the heating capacity. To solve these problems, the performance characteristics of the simultaneous heating and cooling heat pump in the heating-main mode were investigated by varying the flow rate to the indoor unit for the cooling and the compressor rotating speed. In addition, the adequate control methods were suggested to improve the system efficiency.

Analysis of the Outdoor Design Conditions for Greenhouse Heating and Cooling Systems in Korea (온실의 냉난방시스템 설계용 외부기상조건 분석)

  • Nam, Sang-Woon;Shin, Hyun-Ho
    • Journal of Bio-Environment Control
    • /
    • v.25 no.4
    • /
    • pp.308-319
    • /
    • 2016
  • In order to set the outdoor weather conditions to be applied to the design standard of the greenhouse heating and cooling system, outdoor air temperature and heating degree-hour for heating design, dry bulb temperature, wet bulb temperature and solar irradiance for cooling design were analyzed and presented. For every region in Korea, we used thirty years from 1981 to 2010 hourly weather data for analysis, which is the current standard of climatological normal provided by KMA. Since the use of standard weather data is limited, design weather conditions were obtained using the entire weather data for 30 years, and the average value of the entire data period was presented as a design standard. The design weather data with exceedance probability of 1, 2.5, and 5% were analyzed by the TAC method, and we presented the distribution map with exceedance probability of 1% for heating and 2.5% for cooling which are recommended by design standards. The changes of maximum heating load, seasonal heating load and maximum cooling load were examined by regions, exceedance probabilities, and setpoint temperatures. The proposed outdoor design conditions can be used not only directly for the greenhouse heating and cooling design, but also for the reinforcement of heating and cooling facilities and the establishment of energy saving measures. Recently, due to the climate change, sweltering heat in summer and abnormal temperature in winter are occurring frequently, so we need to analyze weather data periodically and revise the design standard at least every 10 years cycle.

Heating and Cooling Energy Demand Evaluating of Standard Houses According to Layer Component of Masonry, Concrete and Wood Frame Using PHPP (PHPP를 활용한 조적, 콘크리트, 목조 레이어 구성별 표준주택 냉·난방 에너지 요구량 평가)

  • Kang, Yujin;Lee, Junhee;Lee, Hwayoung;Kim, Sumin
    • Journal of the Korean Wood Science and Technology
    • /
    • v.45 no.1
    • /
    • pp.1-11
    • /
    • 2017
  • A lot of the energy are consumed on heating and cooling in buildings. The buildings need to minimize the heating and cooling loads for $CO_2$ emissions and energy consumption reduction. In recently, also demand of detached houses were increase while the residential culture was changed. The structure of the domestic detached houses can be divided into masonry, concrete, wood frame houses. Therefore, in this study, the heating and cooling load and energy demand were analyzed on the equal area detached house consisting of three structural methods (Masonry, Concrete, Wood frame). Layer of wall, roof, and floor were composited by structure. Thermal transmittance (U-value) of each layer was using the PHPP calculation for considering stud, such as the wood frame wall. In addition, the case of without considering for studs in wood frame wall (Non-studs) was analyzed in order to compare the difference between studs or not. Analysis was performed using self-developed heating and cooling load calculation program (CHLC) based excel and ECO2. The results of cooling and heating load and energy demand showed the highest values in the wood frame structure, and the concrete structure were confirmed to maintain a high value secondly. Two structure were determined to be disadvantageous on the energy consumption. Consequently, the masonry structure have an advantage over the other structure under the identical conditions. It was determined that if the except for thermal bridges due to the studs in the wood frame structure, it can be reduced the energy consumption.

Optimal Capacity Determination of Hydrogen Fuel Cell Technology Based Trigeneration System And Prediction of Semi-closed Greenhouse Dynamic Energy Loads Using Building Energy Simulation (건물 에너지 시뮬레이션을 이용한 반밀폐형 온실의 동적 에너지 부하 예측 및 수소연료전지 3중 열병합 시스템 적정 용량 산정)

  • Seung-Hun Lee;Rack-Woo Kim;Chan-Min Kim;Hee-Woong Seok;Sungwook Yoon
    • Journal of Bio-Environment Control
    • /
    • v.32 no.3
    • /
    • pp.181-189
    • /
    • 2023
  • Hydrogen has gained attention as an environmentally friendly energy source among various renewable options, however, its application in agriculture remains limited. This study aims to apply the hydrogen fuel cell triple heat-combining system, originally not designed for greenhouses, to greenhouses in order to save energy and reduce greenhouse gas emissions. This system can produce heating, cooling, and electricity from hydrogen while recovering waste heat. To implement a hydrogen fuel cell triple heat-combining system in a greenhouse, it is crucial to evaluate the greenhouse's heating and cooling load. Accurate analysis of these loads requires considering factors such as greenhouse configuration, existing heating and cooling systems, and specific crop types being cultivated. Consequently, this study aimed to estimate the cooling and heating load using building energy simulation (BES). This study collected and analyzed meteorological data from 2012 to 2021 for semi-enclosed greenhouses cultivating tomatoes in Jeonju City. The covering material and framework were modeled based on the greenhouse design, and crop energy and soil energy were taken into account. To verify the effectiveness of the building energy simulation, we conducted analyses with and without crops, as well as static and dynamic energy analyses. Furthermore, we calculated the average maximum heating capacity of 449,578 kJ·h-1 and the average cooling capacity of 431,187 kJ·h-1 from the monthly maximum cooling and heating load analyses.