• 제목/요약/키워드: Heating and cooling load

검색결과 383건 처리시간 0.027초

열환경챔버의 냉방 시뮬레이션 프로그램 개발에 관한 연구 (A Study on the Development of Cooling Simulation Program for Thermal Environmental Chamber)

  • 이한홍
    • 한국생산제조학회지
    • /
    • 제8권5호
    • /
    • pp.108-114
    • /
    • 1999
  • The thermal environmental chamber has been using in maintaining weather condition keeping thermal capacity under heating and cooling load fluctuation and for the performance testing of cooling system or air-conditioner on artificial envi-ronment. In ordder to make the various environmental conditions in the thermal environmental chamber the proper cooling system is necessary to eliminate the heating load produced inside the chamber and to maintain the designed environmental condition. For this reason the optimal design of cooling system and the prediction of performance is also required. This paper describes the prediction of performance of cooling system in the thermal environmental chamber with the capacity of 37,000kcal/hr which is developed for the test of performance in heating mode of heat pump system, In the results this paper is trying to develop simulation program on the base of mathematical models and which can be applied effectively to the optimal design of cooling system and prediction of performance to the inside and outside change of envi-ronmetal load.

  • PDF

BES 프로그램을 이용한 국내 대표적 대형온실의 에너지 부하 예측 (Prediction of Greenhouse Energy Loads using Building Energy Simulation (BES))

  • 이성복;이인복;홍세운;서일환;;권경석;하태환;한창평
    • 한국농공학회논문집
    • /
    • 제54권3호
    • /
    • pp.113-124
    • /
    • 2012
  • Reliable estimation of energy load inside the greenhouse and the selection of cooling and heating facilities are very important preceding factors to save energy as well as initial and maintenance costs of operating a greenhouse. Recently, building energy simulation (BES) technique to simulate a model similar to the actual conditions through a variety of dynamic simulation methods, and predict and analyze the flow of energy is being actively introduced and developed. As a fundamental research to apply the BES technique which is mainly used for analysis of general buildings, to greenhouse, this research designed four types of naturally-ventilated greenhouses using one of commercial programs, TRNSYS, and then compared and analyzed their energy load properties, by applying meteorological data collected from six regions in Korea. When comparing the greenhouse load of each region depending on latitude and topographical characteristics through simulation, Chuncheon had nearly 9~49 % higher heating load per year than other regions, but its annual cooling load was the reverse to it. Except for Jeju, 1-2W type greenhouses in five regions showed about 17 % higher heating load than a widespan type greenhouse, and 1-2W type greenhouses in Chuncheon, Suwon, Cheongju, Daegu, Cheonju and Jeju had 23 %, 20 %, 17 %, 16 %, 18 % and 20 % higher cooling load respectively than a wide span-type one. Glasshouse and vinyl greenhouse showed 8~11 % and 10~12 % differences respectively in heating load, while 2~10 % and 7~10 % differences in cooling load respectively.

지붕형 태양광발전 패널의 공장 지붕 설치에 따른 냉방 및 난방 부하 변화량 연구 (A Study of Cooling and Heating Load Changes with Roof Type Solar Panels Installed on Factory Roof)

  • 조호현;김정민;김영일
    • 한국지열·수열에너지학회논문집
    • /
    • 제16권4호
    • /
    • pp.9-15
    • /
    • 2020
  • In this study, effect of reinforced insulation on heating and cooling loads were studied due to installation of PV panels on factory building roof with a floor area of 12,960 m2. For PV panel installation, combination of aluminum, polyurethane, air, polystyrene and steel materials were added to the original roof, which increased thermal insulation performance. Half of the roof were covered with PV panel and the other half without. Temperature and relative humidity were measured for 8 days during summer season for both indoor spaces. PV panel showed the effect of lowering the indoor space temperature by 0.6℃. TRNSYS dynamic simulation showed that with PV panel, cooling load per area is reduced by 1.7 W/m2 and heating by 10.0 W/m2. PV panels installed on building roof not only generate electricity but also can save energy by reducing cooling and heating loads.

페리미터존의 에어배리어 공조방식에 따른 실내 열환경 평가 (Evaluation of Indoor Thermal Environment According to Air-Barrier Air Conditioning System in Perimeter Zone)

  • 박병윤;함흥돈;손장열
    • 설비공학논문집
    • /
    • 제17권4호
    • /
    • pp.370-376
    • /
    • 2005
  • For the purpose of investigating the effective removal of heating/cooling load from light-weighted building envelope, two air-conditioning systems, conventional parameter air-conditioning system and air-barrier system, are evaluated and compared by both experiment and simulation with six different cases during heating and cooling season. In addition, the characteristics of window-side building thermal load are assessed by varying supply air velocity in order to seek the optimal system operation condition. The results are as follows. 1) Air-barrier system is more effective to remove heating/cooling load at perimeter zone than conventional parameter air-conditioning system. Moreover, the better effectiveness appears during cooling season than during heating season. 2) The experiment during cooling season provides that indoor temperature of air-barrier system shows $1^{\circ}C$ less than that of the conventional system with similar outdoor air temperature profile, and indoor temperature distribution is more uniform throughout the experimented model space. It concludes that air-barrier system can achieve energy saving comparing to the conventional system. 3) The capturing efficiency of air-barrier system is 0.47 on heating season and 0.2 on cooling season with the same supply air volume. It results that the system performs effectively to remove building thermal load, moreover demonstrates high efficiency during cooling season. 4) The simulation results provide that capturing efficiency to evaluate the effective removal of building load from perimeter zone shows high value when supply air velocity is 1 m/s.

창호의 단열성능에 따른 공동주택 냉난방 부하량 변화 (The Change of Heating and Cooling Load according to the Thermal Insulation Performance of Window for an Apartment House)

  • 송수빈;김영탁;윤성환
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2008년도 하계학술발표대회 논문집
    • /
    • pp.853-856
    • /
    • 2008
  • Windows have an great effect on annual building load because windows are the weakest parts of building envelope thermally. To reduce the consumption of building energy, the thermal performance of window has to be improved in first place. Therefore this research aims to make a quantitative analysis of the heating and cooling load according to the window thermal performance using the heat load simulation program. As a result of the simulation, annual heat load is down 38% according to the decrease of U-value of window, 1.00 W/$m^2K$. and annual heat load is up 10% according to the decrease of shading coefficient, 0.20. The annual load of the window with Low-E glass is 15% lower than the window with pair glass.

  • PDF

실효온도차법에 의한 최대열부하 계산용 온습도에 관한 연구 (Design Temperature and Absolute Humidity for Peak Cooling and Heating Load Calculation with ETD Method)

  • 김두천;서진석
    • 설비공학논문집
    • /
    • 제5권4호
    • /
    • pp.278-284
    • /
    • 1993
  • A simplified TAC method was developed for the selection of design temperature and absolute humidity for peak cooling and heating load calculation with ETD method. And the design data of the 11 major cities in Korea were obtained. Based on the simplified TAC method, the design data for summer and autumn cooling season were selected by the TAC 5.0% of July through August and TAC 5.0% of October, respectively. But the design data for winter heating season were selected by the conventional TAC 2.5% of the full winter season.

  • PDF

초고층 공동주택의 세대별 냉난방부하 시뮬레이션 결과 및 에너지 실사용량과의 비교 분석 (A Comparative Analysis of Energy Simulation Results and Actual Energy Consumption on Super High-rise Apartments)

  • 서혜수;김병선
    • 한국태양에너지학회 논문집
    • /
    • 제31권4호
    • /
    • pp.34-40
    • /
    • 2011
  • Apartment Housing has been increasing steadily, particularly our current super high-rise apartment houses that represent the culture has become a trend in Korea. These super high-rise apartment houses' curtain wall system increases heating and cooling loads, it is expected to vary by each unit's thermal properties. In this study, measured indoor environment and energy simulation results were compared to actual energy consumption. As a result, the various factors that affect heating and cooling loads, such as direction, plan type and glazing area, influence each unit's load characteristic. In particular, according to the electricity costs savings behavior, the occupant's thermal discomfort is expected to be large in summer. Therefore, to reduce heating and cooling load for each unit requires a reasonable plan.

Intermittent Heating and Cooling Load Calculation Method -Comparing with ISO 13790

  • Lee, Sang-Hoon
    • Architectural research
    • /
    • 제14권1호
    • /
    • pp.11-18
    • /
    • 2012
  • College of Architecture, Georgia Institute of Technology, Atlanta, GA, US Abstract The intermittent heating and cooling energy need calculation of the ISO 13790 monthly method was examined. The current ISO 13790 method applies a reduction factor to the continuous heating and cooling need calculation result to derive the intermittent heating and cooling for each month. This paper proposes a method for the intermittent energy need calculation based on the internal mean temperature calculation. The internal temperature calculation procedure was introduced considering the heat-balance taking into account of heat gain, heat loss, and thermal inertia for reduced heating and cooling period. Then, the calculated internal mean temperature was used for the intermittent heating and cooling energy need calculation. The calculation results from the proposed method were compared to the current ISO 13790 method and validated with a dynamic simulation using EnergyPlus. The study indicates that the intermittent heating and cooling energy need calculation method using the proposed model improves transparency of the current ISO 13790 method and draws more rational outcomes in the monthly heating and cooling energy need calculation.

강제환기가 적용된 시험공간에서 냉난방부하의 시뮬레이션 및 실증실험 (Simulation and Verification Experiment of Cooling and Heating Load for a Test Space with Forced Ventilation)

  • 김동혁;홍희기;유호선;김욱중
    • 설비공학논문집
    • /
    • 제18권12호
    • /
    • pp.947-954
    • /
    • 2006
  • Building energy consumption according to the ventilation has been considered to be an important subject. The purpose of this study is to investigate the cooling and heating loads in a test space with a forced ventilating system. In the test space, on/off controlled air-conditioning and forced ventilating facility were operated between 8 : 30 to 21 : 00 during 4 days and some important data like temperatures and energy consumption were measured to obtain actual thermal loads. The simulation was carried out in a mode of temperature level control using a TRNSYS 15.3 with a precisely measured air change amount and performance data of air-conditioner. Heating load and cooling load including sensible and latent were compared between by experiment and by simulation. Both of thermal loads associated with ventilation show a close agreement within an engineering tolerance.

에너지 효율로 본 상업용 건물의 적정 창호에 관한 연구 (The optimal window system of office buildings considering energy efficiency)

  • 유호천;오영호;박승길
    • 한국태양에너지학회 논문집
    • /
    • 제25권4호
    • /
    • pp.53-60
    • /
    • 2005
  • The purpose of this study is to improve energy efficiency of windows in office buildings through the evaluation of their heating, cooling and illumination load. Energy efficiency is influenced by window size which is determined at the early stage of building design. The process of this study is as follows. First, energy performance is analysed according to the various rates of windows through computer simulation (ECOTECT). Then, the annual heating, cooling and illuminating loads according to the different window sizes are compared one another. Results indicated that the optimal window size considering energy efficiency is 50% of the surface area. When the window size is 50% of the surface area, annual maintenance expense is also smallest. Since the cost of cooling is larger than that of heating, too low indoor air temperature in summer is unfavorable based on the reasonable annual maintenance expenses.