• Title/Summary/Keyword: Heating and cooling energy requirements

Search Result 23, Processing Time 0.029 seconds

Energy optimization of a Sulfur-Iodine thermochemical nuclear hydrogen production cycle

  • Juarez-Martinez, L.C.;Espinosa-Paredes, G.;Vazquez-Rodriguez, A.;Romero-Paredes, H.
    • Nuclear Engineering and Technology
    • /
    • v.53 no.6
    • /
    • pp.2066-2073
    • /
    • 2021
  • The use of nuclear reactors is a large studied possible solution for thermochemical water splitting cycles. Nevertheless, there are several problems that have to be solved. One of them is to increase the efficiency of the cycles. Hence, in this paper, a thermal energy optimization of a Sulfur-Iodine nuclear hydrogen production cycle was performed by means a heuristic method with the aim of minimizing the energy targets of the heat exchanger network at different minimum temperature differences. With this method, four different heat exchanger networks are proposed. A reduction of the energy requirements for cooling ranges between 58.9-59.8% and 52.6-53.3% heating, compared to the reference design with no heat exchanger network. With this reduction, the thermal efficiency of the cycle increased in about 10% in average compared to the reference efficiency. This improves the use of thermal energy of the cycle.

The Indoor Environmental Quality Improving and Energy Saving Potential of Phase-Change Material Integrated Facades for High-Rise Office Buildings in Shanghai

  • Jin, Qian
    • International Journal of High-Rise Buildings
    • /
    • v.6 no.2
    • /
    • pp.197-205
    • /
    • 2017
  • The conflict between indoor environmental quality and energy consumption has become an unneglectable problem for highrise office buildings, where occupants' productivity is highly affected by their working environment. An effective Façade, therefore, should play the role of an active building skin by adapting to the ever-changing external environment and internal requirements. This paper explores the energy-saving and indoor environment-improving potential of a phase-change material (PCM) integrated Façade. Building performance simulations, combined with parametric study and sensitivity analysis, are adopted in this research. The result quantifies the potential of a PCM-integrated Façade with different configurations and PCM properties, taking as an example a south-oriented typical office room in Shanghai. It is found that a melting temperature of around $22^{\circ}C$ for the PCM layer is optimal. Compared to a conventional Façade, a PCM-integrated Façade effectively reduces total energy use, peak heating/cooling load, and operative temperature fluctuation during the periods of May-July and November-December.

A Study on a Conceptual Design Process of Fuel Feeding Systems for High-Speed Vehicles (초고속 비행체 연료공급시스템 개념설계과정 연구)

  • Lee, Hyung Ju;Park, Jeongbae;Kwon, Minchan;Hwang, Ki-Young
    • Journal of Aerospace System Engineering
    • /
    • v.7 no.3
    • /
    • pp.7-14
    • /
    • 2013
  • Hypersonic vehicles over Mach 5 need active cooling or thermal management systems to resolve excessive heating problems on their fuselage and engines. Endothermic fuels are widely used these days not only for the energy source but also for a heat sink. Therefore, fuel supply systems of hypersonic vehicles should be mainly composed of adiabatic fuel storage tank, cooling systems for the airframe and engine/nozzle, and fuel supply/injection systems in high pressure, high temperature, and high fuel flow rate conditions. This paper describes a conceptual design process of a hypersonic fuel supply system in order for designing a layout of the system, and identifying components and their specification requirements.

A Study on the Multi-level Optimization Method for Heat Source System Design (다단계 최적화 수법을 이용한 열원 설비 설계법에 관한 연구)

  • Yu, Min-Gyung;Nam, Yujin
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.28 no.7
    • /
    • pp.299-304
    • /
    • 2016
  • In recent years, heat source systems which have a principal effect on the performance of buildings are difficult to design optimally as a great number of design factors and constraints in large and complicated buildings need to be considered. On the other hand, it is necessary to design an optimum system combination and operation planning for energy efficiency considering Life Cycle Cost (LCC). This study suggests a multi-level and multi-objective optimization method to minimize both LCC and investment cost using a genetic algorithm targeting an office building which requires a large cooling load. The optimum method uses a two stage process to derive the system combination and the operation schedule by utilizing the input data of cooling and heating load profile and system performance characteristics calculated by dynamic energy simulation. The results were assessed by Pareto analysis and a number of Pareto optimal solutions were determined. Moreover, it was confirmed that the derived operation schedule was useful for operating the heat source systems efficiently against the building energy requirements. Consequently, the proposed optimization method is determined by a valid way if the design process is difficult to optimize.

Analysis of Environmental Design Data for Growing Pleurotus ervngii (큰 느타리버섯 재배사의 환경설계용 자료 분석)

  • Yoon, Yong-Cheol;Suh, Won-Myung;Lee, In-Bok
    • Journal of Bio-Environment Control
    • /
    • v.14 no.2
    • /
    • pp.95-105
    • /
    • 2005
  • This study was carried out to file up using effect and requirement of energy for environmental design data of Pleurotus eryngii growing houses. Heating and cooling Degree-Hour (D-H) were calculated and compared for. some Pleurotus eryngii growing houses of sandwich-panel (permanent) o. arch-roofed(simple) type structures modified and suggested through field survey and analysis. Also thermal resistance (R-value) was calculated for the heat insulating and covering materials of the permanent and simple-type, which were made of polyurethane or polystyrene panel and $7\~8$ layers heat conservation cover wall. The variations of heating and cooling D-H simulated for Jinju area was nearly linearly proportional to the setting inside temperatures. The variations of cooling D-H was much more sensitive than those of heating D-H. Therefore, it was expected that the variations of required energy in accordance with setting temperature or actual temperature maintained inside of the cultivation house could be estimated and also the estimated results of heating and cooling D-H could be effectively used far the verification of environmental simulation as well as for the calculation of required energy amounts. When the cultivation floor areas are all equal, panel type houses to be constructed by various combinations of materials were found to by far more effective than simple type pipe house in the aspect of energy conservation maintenance except some additional cost invested initially. And also the energy effectiveness of multi-span house compared to single span together with the prediction of energy requirement depending on the level insulated for the wall and roof area could be estimated. Additionally, structural as well as environmental optimizations are expected to be possible by calculating periodical and/or seasonal energy requirements for those various combinations of insulation level and different climate conditions, etc.

A Study on the Optimal Design of Urban Utility Systems (부하에 따른 도시기반 공급.처리시스템의 최적설계에 관한 연구)

  • Lee, Tae-Won;Kim, Yong-Ki
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.732-737
    • /
    • 2001
  • The mathematical method was developed and numerical analyses were carried out with various parameters to provide substantial data for optimal design and operation of urban utility systems. The composition of systems and their specifications, such as co-generation system, heat pump system, incineration system and other heating and cooling system could be obtained through these analyses for various resource and energy requirements in urban area. As results the system constituents and operating characteristics, and their economic performances such as the value of objective function, initial and an operating costs were discussed for various load patterns. The effective system design method and the excepted effects of the several unused energy recovery systems were also briefly discussed with the variation of the buildings and facilities species and their capacities.

  • PDF

A Study on the Optimal Design of Urban Energy Supply Systems (도시기반 에너지공급시스템의 최적화 방안 연구)

  • Kim, Yong-Ki;Lee, Tae-Won;Woo, Nam-Sub
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.6
    • /
    • pp.396-402
    • /
    • 2009
  • Recently many efforts have been carried out on the development of energy-efficient and environment-friendly systems in order to preserve natural environment and to reduce environmental loads in the branch of the urban planning and the building design. In this study, a mathematical method was developed and a numerical analysis was carried out with various parameters to provide substantial data for optimal design and operation of urban energy supply systems. Components of the system and their specifications, such as a co-generation system and other heating and cooling systems, could be obtained through this analysis for various resource and energy requirements in urban area. In this study, the system constituents and operating characteristics, and their economic performances such as the value of objective function, the amount of energy consumption were discussed for various load patterns and power load ratios. Also, it turns out that the optimal energy supply system can save energy by $10{\sim}20%$ in comparison with the conventional energy supply system.

Analysis of Greenhouse Thermal Environment by Model Simulation (시뮬레이션 모형에 의한 온실의 열환경 분석)

  • 서원명;윤용철
    • Journal of Bio-Environment Control
    • /
    • v.5 no.2
    • /
    • pp.215-235
    • /
    • 1996
  • The thermal analysis by mathematical model simulation makes it possible to reasonably predict heating and/or cooling requirements of certain greenhouses located under various geographical and climatic environment. It is another advantages of model simulation technique to be able to make it possible to select appropriate heating system, to set up energy utilization strategy, to schedule seasonal crop pattern, as well as to determine new greenhouse ranges. In this study, the control pattern for greenhouse microclimate is categorized as cooling and heating. Dynamic model was adopted to simulate heating requirements and/or energy conservation effectiveness such as energy saving by night-time thermal curtain, estimation of Heating Degree-Hours(HDH), long time prediction of greenhouse thermal behavior, etc. On the other hand, the cooling effects of ventilation, shading, and pad ||||&|||| fan system were partly analyzed by static model. By the experimental work with small size model greenhouse of 1.2m$\times$2.4m, it was found that cooling the greenhouse by spraying cold water directly on greenhouse cover surface or by recirculating cold water through heat exchangers would be effective in greenhouse summer cooling. The mathematical model developed for greenhouse model simulation is highly applicable because it can reflects various climatic factors like temperature, humidity, beam and diffuse solar radiation, wind velocity, etc. This model was closely verified by various weather data obtained through long period greenhouse experiment. Most of the materials relating with greenhouse heating or cooling components were obtained from model greenhouse simulated mathematically by using typical year(1987) data of Jinju Gyeongnam. But some of the materials relating with greenhouse cooling was obtained by performing model experiments which include analyzing cooling effect of water sprayed directly on greenhouse roof surface. The results are summarized as follows : 1. The heating requirements of model greenhouse were highly related with the minimum temperature set for given greenhouse. The setting temperature at night-time is much more influential on heating energy requirement than that at day-time. Therefore It is highly recommended that night- time setting temperature should be carefully determined and controlled. 2. The HDH data obtained by conventional method were estimated on the basis of considerably long term average weather temperature together with the standard base temperature(usually 18.3$^{\circ}C$). This kind of data can merely be used as a relative comparison criteria about heating load, but is not applicable in the calculation of greenhouse heating requirements because of the limited consideration of climatic factors and inappropriate base temperature. By comparing the HDM data with the results of simulation, it is found that the heating system design by HDH data will probably overshoot the actual heating requirement. 3. The energy saving effect of night-time thermal curtain as well as estimated heating requirement is found to be sensitively related with weather condition: Thermal curtain adopted for simulation showed high effectiveness in energy saving which amounts to more than 50% of annual heating requirement. 4. The ventilation performances doting warm seasons are mainly influenced by air exchange rate even though there are some variations depending on greenhouse structural difference, weather and cropping conditions. For air exchanges above 1 volume per minute, the reduction rate of temperature rise on both types of considered greenhouse becomes modest with the additional increase of ventilation capacity. Therefore the desirable ventilation capacity is assumed to be 1 air change per minute, which is the recommended ventilation rate in common greenhouse. 5. In glass covered greenhouse with full production, under clear weather of 50% RH, and continuous 1 air change per minute, the temperature drop in 50% shaded greenhouse and pad & fan systemed greenhouse is 2.6$^{\circ}C$ and.6.1$^{\circ}C$ respectively. The temperature in control greenhouse under continuous air change at this time was 36.6$^{\circ}C$ which was 5.3$^{\circ}C$ above ambient temperature. As a result the greenhouse temperature can be maintained 3$^{\circ}C$ below ambient temperature. But when RH is 80%, it was impossible to drop greenhouse temperature below ambient temperature because possible temperature reduction by pad ||||&|||| fan system at this time is not more than 2.4$^{\circ}C$. 6. During 3 months of hot summer season if the greenhouse is assumed to be cooled only when greenhouse temperature rise above 27$^{\circ}C$, the relationship between RH of ambient air and greenhouse temperature drop($\Delta$T) was formulated as follows : $\Delta$T= -0.077RH+7.7 7. Time dependent cooling effects performed by operation of each or combination of ventilation, 50% shading, pad & fan of 80% efficiency, were continuously predicted for one typical summer day long. When the greenhouse was cooled only by 1 air change per minute, greenhouse air temperature was 5$^{\circ}C$ above outdoor temperature. Either method alone can not drop greenhouse air temperature below outdoor temperature even under the fully cropped situations. But when both systems were operated together, greenhouse air temperature can be controlled to about 2.0-2.3$^{\circ}C$ below ambient temperature. 8. When the cool water of 6.5-8.5$^{\circ}C$ was sprayed on greenhouse roof surface with the water flow rate of 1.3 liter/min per unit greenhouse floor area, greenhouse air temperature could be dropped down to 16.5-18.$0^{\circ}C$, whlch is about 1$0^{\circ}C$ below the ambient temperature of 26.5-28.$0^{\circ}C$ at that time. The most important thing in cooling greenhouse air effectively with water spray may be obtaining plenty of cool water source like ground water itself or cold water produced by heat-pump. Future work is focused on not only analyzing the feasibility of heat pump operation but also finding the relationships between greenhouse air temperature(T$_{g}$ ), spraying water temperature(T$_{w}$ ), water flow rate(Q), and ambient temperature(T$_{o}$).

  • PDF

Study on the Operation Strategy of A Building with Multi-Complex Spaces (복합 공간 구성 건물의 공조구역 운영 전략에 따른 에너지부하 특성 연구)

  • Yook, In-Soo;Kim, Min-Hwan;Nam, Hyeon-Jin;Kim, Dong-Ho;Seol, Dong-Mun;Lee, Geon-Tae;Kim, Jin-Ho S.;Kim, Jae-Min
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.108-113
    • /
    • 2009
  • Buildings with multi-complex spaces designed for architectural values and functional requirements give rise to technical challenges in terms of energy efficiency and thermal comfort. Since spaces in such buildings are connected with openings with geometrical complexity, it is hard to define zoning plan and to control heating/cooling loads effectively. This paper presents a case study on the evaluation of operation strategy for a building with multi-complex spaces using computer simulation. The modelling methodology and the results of the simulations are also described.

  • PDF

A Study on Eco-friendly Indoor Space of Domestic Eco-certified (LEED)Building through the Cases Analysis & User's Satisfaction (LEED인증 건축물 분석을 통한 실내공간의 친환경성 개선방안에 관한 연구)

  • Na, Min-Hee;Han, Hae-Ryon
    • Korean Institute of Interior Design Journal
    • /
    • v.22 no.5
    • /
    • pp.233-240
    • /
    • 2013
  • The building construction sector has been blamed as the main culprit of environmental contamination worldwide. So, there shall be some constructive alternatives in architectural engineering. As one of the alternatives, the LEED ("Leadership in Energy and Environmental Design") has been introduced since 1990s and has been well recognized in saving the resources and energy. "LEED" has also been introduced in Korea since 2002 but it has not put priority on the eco-friendliness of indoor space. In this study, the international and domestic green systems were analyzed and compared in order to restructure the checklist for indoor space. Using the restructured checklists, the questionnaire were sent to 180 people using 6 office buildings which passed the domestic "LEED" certification. LEED certification system put priority on the air quality and heating/cooling environment in its evaluation section and items. However, according to the results of the study, it was found that the people using the buildings were not satisfied enough with the air environment of buildings along with their other indoor environment items. This shows that even though the office buildings are designed according to the requirements of LEED, the buildings do not meet the occupier's needs. In addition, it showed that the evaluation items should be improved so that they are useful to enhance the satisfaction of the occupiers' needs. The paper could be useful in establishing standard for eco friendliness of indoor space of office buildings which pass the LEED certification as the basic data for increasing energy efficiency and working efficiency of occupiers of the buildings.