• Title/Summary/Keyword: Heating Load

Search Result 892, Processing Time 0.023 seconds

A Methodology of Databased Energy Demand Prediction Using Artificial Neural Networks for a Urban Community (인공신경망을 이용한 데이터베이스 기반의 광역단지 에너지 수요예측 기법 개발)

  • Kong, Dong-Seok;Kwak, Young-Hun;Lee, Byung-Jeong;Huh, Jung-Ho
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.184-189
    • /
    • 2009
  • In order to improve the operation of energy systems, it is necessary for the urban communities to have reliable optimization routines, both computerized and manual, implemented in their organizations. However, before a production plan for the energy system units can be constructed, a prediction of the energy systems first needs to be determined. So, several methodologies have been proposed for energy demand prediction, but due to uncertainties in urban community, many of them will fail in practice. The main topic of this paper has been the development of a method for energy demand prediction at urban community. Energy demand prediction is important input parameters to plan for the energy planing. This paper presents a energy demand prediction method which estimates heat and electricity for various building categories. The method has been based on artificial neural networks(ANN). The advantage of ANN with respect to the other method is their ability of modeling a multivariable problem given by the complex relationships between the variables. Also, the ANN can extract the relationships among these variables by means of learning with training data. In this paper, the ANN have been applied in oder to correlate weather conditions, calendar data, schedules, etc. Space heating, cooling, hot water and HVAC electricity can be predicted using this method. This method can produce 10% of errors hourly load profile from individual building to urban community.

  • PDF

Development of SMH Actuator System Using Hydrogen-Absorbing Alloy

  • Kwon, Tae-Kyu;Jeon, Won-Suk;Pang, Du-Yeol;Choi, Kwang-Hun;Kim, Nam-Gyun;Lee, Seong-Cheol
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1328-1333
    • /
    • 2005
  • This paper presents the temperature-pressure characteristics of a new SMH actuator using a Peltier module. The SMH actuator is characterized by its small size, low weight, noiseless operation, and compliance similar to that of the human body. The simple SMH actuator, consisting of the plated hydrogen-absorbing alloys as a power source, Peltier elements as a heat source, and a cylinder with metal bellows as a functioning part has been developed. To improve the thermal conductivity of the hydrogen-absorbing alloy, an assembly of copper pipes has been used. It is well known that hydrogen-absorbing alloys can reversibly absorb and desorb a large amount of hydrogen, more than about 1000 times of their own volume. The hydrogen equilibrium pressure increases when hydrogen is desorbed by heating of the hydrogen-absorbing alloys, whereas by cooling the alloys, the hydrogen equilibrium pressure decreases and hydrogen is absorbed. The new special metal hydride (SMH) actuator uses the reversible reaction between the heat energy and mechanical energy of a hydrogen absorbing alloys. The desirable characteristics of SMH actuator, which makes it suitable for the uses in medical and rehabilitation applications, have been also studied. For this purpose, the characteristics of the new SMH actuator for different temperature, pressure, and external load were explored.

  • PDF

Characteristic of Cabin Temperature According to Thermal Load Condition of Heat Pump for Electric Vehicle (전기자동차용 히트펌프의 열 부하 조건에 따른 캐빈온도 특성)

  • Park, Ji Soo;Han, Jae Young;Kim, Sung-Soo;Yu, Sang Seok
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.2
    • /
    • pp.85-91
    • /
    • 2016
  • The Positive Temperature Coefficient (PTC) is used for cabin air heating of a battery electric vehicle, which is different from conventional vehicles. Since the PTC heater consumes a large quantity of power in a parasitic manner, many valuable studies have been reported in the field of alternative heat pumps. In this study, a model for an R134a heat pump taking into account the thermal environment of the cabin was developed for a MATLAB/SIMULINK(R) platform. Component and cabin models are validated with reference values. Results show that the heat pump is more competitive for parasitic power consumption over all ambient temperature conditions. Additionally, the method of waste heat recovery to overcome disadvantages when temperatures are below zero is applied to efficiently operate the heat pump.

Operational Characteristics of Methanol Reformer for the Phosphoric Acid Fuel Cell System (인산형 연료전지용 메탄올 연료개질기의 운전 특성)

  • 정두환;신동열;임희천
    • Journal of Energy Engineering
    • /
    • v.2 no.2
    • /
    • pp.200-207
    • /
    • 1993
  • A methanol reformer was designed and fabricated using a CuO-ZnO low temperature shift catalyst, and its operation characteristics have been studied for the phosphoric acid fuel cell (PAFC) power generation system. The type of reactor was annular Methanol was consumed both for heating and for reforming fuel. Contents of carbon monoxide produced from the reformer increased as the reaction temperatures increased, but decreased as the mole ratios of water to methanol(H$_2$O/CH$_3$OH) increased. At steady state operating conditional, temperature profile of the catalytic reactor of the reformer was well coincide with the model equation, and it took 50 minutes from start to the rated condition of the reformer. When the system was operated at 4/4 and 1/4 of load, thermal efficiencies of the system were 72.3% and 77%, respectively. When the PAFC system was operated with reformed gas in the range of 62 V-37.6 V and 0-147 A, the trend of I-V curve showed a typical fuel tell characteristic. At steady state condition, the flow rates of reforming and combustion methanol were 88.1 mol/h and 50.1 mol/h, respectively.

  • PDF

Thermal and structural analysis of a cryogenic conduction cooling system for a HTS NMR magnet

  • In, Sehwan;Hong, Yong-Ju;Yeom, Hankil;Ko, Junseok;Kim, Hyobong;Park, Seong-Je
    • Progress in Superconductivity and Cryogenics
    • /
    • v.18 no.1
    • /
    • pp.59-63
    • /
    • 2016
  • The superconducting NMR magnets have used cryogen such as liquid helium for their cooling. The conduction cooling method using cryocoolers, however, makes the cryogenic cooling system for NMR magnets more compact and user-friendly than the cryogen cooling method. This paper describes the thermal and structural analysis of a cryogenic conduction cooling system for a 400 MHz HTS NMR magnet, focusing on the magnet assembly. The highly thermo-conductive cooling plates between HTS double pancake coils are used to transfer the heat generated in coils, namely Joule heating at lap splice joints, to thermal link blocks and finally the cryocooler. The conduction cooling structure of the HTS magnet assembly preliminarily designed is verified by thermal and structural analysis. The orthotropic thermal properties of the HTS coil, thermal contact resistance and radiation heat load are considered in the thermal analysis. The thermal analysis confirms the uniform temperature distribution for the present thermal design of the NMR magnet within 0.2 K. The mechanical stress and the displacement by the electromagnetic force and the thermal contraction are checked to verify structural stability. The structural analysis indicates that the mechanical stress on each component of the magnet is less than its material yield strength and the displacement is acceptable in comparison with the magnet dimension.

Analysis of restrained steel beams subjected to heating and cooling Part I: Theory

  • Li, Guo-Qiang;Guo, Shi-Xiong
    • Steel and Composite Structures
    • /
    • v.8 no.1
    • /
    • pp.1-18
    • /
    • 2008
  • Observations from experiments and real fire indicate that restrained steel beams have better fire-resistant capability than isolated beams. Due to the effects of restraints, a steel beam in fire condition can undergo very large deflections and the run away damage may be avoided. In addition, axial forces will be induced with temperature increasing and play an important role on the behaviour of the restrained beam. The factors influencing the behavior of a restrained beam subjected to fire include the stiffness of axial and rotational restraints, the load type on the beam and the distribution of temperature in the cross-section of the beam, etc. In this paper, a simplified model is proposed to analyze the performance of restrained steel beams in fire condition. Based on an assumption of the deflection curve of the beam, the axial force, together with the strain and stress distributions in the beam, can be determined. By integrating the stress, the combined moment and force in the cross-section of the beam can be obtained. Then, through substituting the moment and axial force into the equilibrium equation, the behavior of the restrained beam in fire condition can be worked out. Furthermore, for the safety evaluation and repair after a fire, the behaviour of restrained beams during cooling should be understood. For a restrained beam experiencing very high temperatures, the strength of the steel will recover when temperature decreases, but the contraction force, which is produced by thermal contraction, will aggravate the tensile stresses in the beam. In this paper, the behaviour of the restrained beam in cooling phase is analyzed, and the effect of the contraction force is discussed.

A Study on Effect of Intake Mixture Temperature upon Fuel Economy and Exhaust Emissions in Diesel Engines with a Scrubber EGR System

  • Bae, Myung--Whan;Ryu, Chang-Seong;Yoshihiro Mochimaru;Jeon, Hyo-Joong
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.2
    • /
    • pp.315-331
    • /
    • 2004
  • The effects of intake mixture temperature on performance and exhaust emissions under four kinds of engine loads were experimentally investigated by using a four-cycle. four-cylinder. swirl chamber type. water-cooled diesel engine with scrubber EGR system operating at three kinds of engine speeds. The purpose of this study is to develop the scrubber exhaust gas Recirculation (EGR) control system for reducing $\textrm{NO}_{x}$ and soot emissions simultaneously in diesel engines. The EGR system is used to reduce $\textrm{NO}_{x}$ emissions. And a novel diesel soot-removal device of cylinder-type scrubber with five water injection nozzles is specially designed and manufactured to reduce soot contents in the recirculated exhaust gas to the intake system of the engine. The influences of cooled EGR and water injection. however. would be included within those of scrubber EGR system. In order to survey the effects of cooled EGR and moisture on $\textrm{NO}_{x}$ and soot emissions. the intake mixtures of fresh air and recirculated exhaust gas are heated up using a heater with five heating coils equipped in a steel drum. It is found that intake and exhaust oxygen concentrations are decreased, especially at higher loads. as EGR rate and intake mixture temperature are increased at the same conditions of engine speed and load. and that $\textrm{NO}_{x}$ emissions are decreased. while soot emissions are increased owing to the decrease in intake and exhaust oxygen concentrations and the increase in equivalence ratio. Thus ond can conclude that $\textrm{NO}_{x}$ and soot emissions are considerably influenced by the cooled EGR.

Photovoltaic Generation System Design for Controlling the Temperature and Humidity of Hospital (병원내 온도와 습도조절을 위한 태양광 발전 시스템 설계)

  • Cho, Moon-Taek;Lee, Chung-Sik;Baek, Jong-Mu
    • Journal of the Korean Society of Radiology
    • /
    • v.5 no.3
    • /
    • pp.127-134
    • /
    • 2011
  • In this paper we propose an improved PV generation systems. Improved systems for temperature and humidity controlled heating and air conditioning offers a pleasant environment within the building, set up chopper and consists of a PWM voltage type inverter. The proposed system is stable modulation for a one-chip microprocessor using the synchronous signal and control signals was treated. The proposed system is a PWM voltage type inverter and phase of the synchronous to the grid voltage to detect the system voltage and inverter output to drive the statue, so surplus power to connection was able to, certain buildings such as buildings or hospitals, temperature and humidity sensor is applied to the good dynamic characteristic could be obtained. In addition, the system was applied to the high power factor and low-frequency harmonics by maintaining the output load and grid to power to be supplied to a stable control could get a good result.

Review of Types, Properties, and Importance of Ferrous Based Shape Memory Alloys

  • Rahman, Rana Atta Ur;Juhre, Daniel;Halle, Thorsten
    • Korean Journal of Materials Research
    • /
    • v.28 no.7
    • /
    • pp.381-390
    • /
    • 2018
  • Shape memory alloys(SMAs) have revolutionized the material engineering sciences as they exhibit exclusive features i.e. shape memory effect(SME) and super-elasticity. SMAs are those alloys that when deform return to their predeformed shape upon heating, they also restore their original shape by removing the load. Research on properties of newly advent of several types of ferrous based shape memory alloys(Fe-SMAs), shows that they have immense potential to be the counterpart of Nitinol(NiTi-SMA). These Fe-SMAs have been used and found to be effective because of their low cost, high cold workability, good weldability & excellent characteristics comparing with Nitinol(high processing cost and low cold workability) SMAs. Some of the Fe-SMAs show super-elasticity. Fe-SMAs, especially Fe-Mn-Si alloys have an immense potential for civil engineering structures because of its unique properties e.g. two-way shape memory effect, super elasticity and shape memory effect as well as due to its low cost, high elastic stiffness and wide transformation hysteresis comparative to Nitinol. Further research is being conducted on SMAs to improve and impinge better attributes by improving the material compositions, quantifying the SMA phase transition temperature etc. In this research pre-existing Fe-SMAs are categorised and collected in a tabulated form. An analysis is performed that which category is mostly available. Last 50 years data of Fe-SMA publications and US Patents is collected to show its importance in terms of increasing research on such type of alloys to invent different compositions and applications. This data is analysed as per different year groups during last 50 years and it was analysed as per whether the keywords exist in title of an article or anywhere in the article. It was found that different keywords related to Fe-SMAs/categories of Fe-SMAs, almost don't exist in the title of articles. However, these keywords related to Fe-SMAs/categories of Fe-SMAs, exist inside the article but still there are not too many publications related to Fe-SMAs/categories of Fe-SMAs.

An Analysis of Electricity Consumption Profile based on Measurement Data in High-rise Apartment Complex (실측자료 기반의 공동주택 시간별 전력소비 패턴 분석 연구)

  • Im, Kyung-Up;Yoon, Jong-Ho;Shin, U-Cheul;Park, Jae-Sang;Kim, Kang-Sik
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2011.04a
    • /
    • pp.127-132
    • /
    • 2011
  • Worldwide, the building energy simulation becomes inevitable step for predicting the energy consumption in building. In simulation process, the expertise is required for the accurate analysis results. In Korea, however, most of user use the inconsistent data with Korea circumstance. In this step, we need to construct the standard input data matched building in Korea. In this study, electricity consumption of apartments in Daejeon is analyzed. The yearly data of a apartment complexes of 2009 are analyzed as monthly, daily(week and weekend), timely, and completion year. With this result, we are able to predict the demand pattern of electricity in a house and make the schedule by demand pattern. The results of this study are followed. The averaged amount of electricity consumption in winter is higher than summer because of the high capacity of heating equipment. All of the house has electric base load from 0.26kWh to 0.5kWh. The average of the electricity consumption of month is shown as 326.7kWh. A week is seperated as 4 part such as week, weekend, Saturday and Sunday. During week, the average of timely electricity consumption is shown as 0.442kWh. The Saturday consumption is 0.453kWh. The Sunday is 0.461kWh.

  • PDF