• Title/Summary/Keyword: Heating Energy

Search Result 3,234, Processing Time 0.035 seconds

The optimal window system of office buildings considering energy efficiency (에너지 효율로 본 상업용 건물의 적정 창호에 관한 연구)

  • Yoo, Ho-Chun;Oh, Young-Ho;Park, Seung-Kil
    • Journal of the Korean Solar Energy Society
    • /
    • v.25 no.4
    • /
    • pp.53-60
    • /
    • 2005
  • The purpose of this study is to improve energy efficiency of windows in office buildings through the evaluation of their heating, cooling and illumination load. Energy efficiency is influenced by window size which is determined at the early stage of building design. The process of this study is as follows. First, energy performance is analysed according to the various rates of windows through computer simulation (ECOTECT). Then, the annual heating, cooling and illuminating loads according to the different window sizes are compared one another. Results indicated that the optimal window size considering energy efficiency is 50% of the surface area. When the window size is 50% of the surface area, annual maintenance expense is also smallest. Since the cost of cooling is larger than that of heating, too low indoor air temperature in summer is unfavorable based on the reasonable annual maintenance expenses.

A Comparative Analysis of Energy Simulation Results and Actual Energy Consumption on Super High-rise Apartments (초고층 공동주택의 세대별 냉난방부하 시뮬레이션 결과 및 에너지 실사용량과의 비교 분석)

  • Suh, Hye-Soo;Kim, Byung-Seo
    • Journal of the Korean Solar Energy Society
    • /
    • v.31 no.4
    • /
    • pp.34-40
    • /
    • 2011
  • Apartment Housing has been increasing steadily, particularly our current super high-rise apartment houses that represent the culture has become a trend in Korea. These super high-rise apartment houses' curtain wall system increases heating and cooling loads, it is expected to vary by each unit's thermal properties. In this study, measured indoor environment and energy simulation results were compared to actual energy consumption. As a result, the various factors that affect heating and cooling loads, such as direction, plan type and glazing area, influence each unit's load characteristic. In particular, according to the electricity costs savings behavior, the occupant's thermal discomfort is expected to be large in summer. Therefore, to reduce heating and cooling load for each unit requires a reasonable plan.

A Study on Development of Heat Supply Control Algorithm of Consumer Group Energy Apartment Building by Prediction of Heating Load (집단에너지 공동주택의 사용자 측 열부하 예측에 의한 열공급제어 알고리즘 개발에 관한 연구)

  • Byun, Jae-Ki;Lee, Kyu-Ho;Choi, Young-Don
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.1300-1305
    • /
    • 2009
  • The energy conservation in buildings affects environmental preservation as well as economic benefits, and creates the comfortable indoor environment set for the inhabitants. Especially, apartment buildings show ever-increasing energy consumption with large-sized and high-class tendency, thus energy saving counterplans are needed. The present study is to develop an optical control algorithm by using heating load curve according to the outdoor temperature change. Heating load analysis should be performed before the present method can be applied. Dynamic heating load simulations are performed by resistance-capacitance method. Results show that heating load decrease linearly according to the increase of outdoor temperature.

  • PDF

Evaluation on Utilizing Systems of Incineration Heat as Resource cycling Type (자원순환형 소각열 이용시스템에 관한 평가)

  • 정용현
    • Journal of Environmental Science International
    • /
    • v.12 no.4
    • /
    • pp.503-510
    • /
    • 2003
  • How to plan the energy system is one of the keys f3r constructing the Environment -Friendly City. for this reason, a great number of surveys for utilizing unused energy have conducted by a planner. In regard to unused energy, the heat from incineration plants classify as a unused energy having high-exergy-energy. From this point of view, It is studied about the plant systems providing heat to district heating & cooling(D.H.C) and producing electric power. It is divided four system models as system I (10K [kgf/cm$^2$) vapor as outlet of boiler, supply far 10K vapor and return to 60$^{\circ}C$ as supply condition of district heating), system II (30 K vapor as outlet of boiler, supply for 5t vapor and return to 60f as supply condition of district heating), system 111 (30 K vapor as outlet of boiler, supply for 85$^{\circ}C$ hot water and return to 60$^{\circ}C$ as supply condition of district heating), system IV (30 K vapor as outlet of boiler, supply for 47$^{\circ}C$ hot water and return to 40t as supply condition of district heating). The results from the upper condition of four system, System II got a proper on economical benefits and system IV calculated as benefiting on energy saving effects, and suggest indifference curve as the total evaluation method of both economical benefits and energy saving.

Methodology and Application of Avoided Cost Calculation for Natural Gas and District Heating DSM programs (천연가스.지역난방 수요관리 투자사업의 회피비용 산정기법 개발 및 적용)

  • Choi, Bong-Ha;Park, Sang-Yong;Lee, Deok-Ki;Park, Soo-Uk
    • IE interfaces
    • /
    • v.20 no.3
    • /
    • pp.353-362
    • /
    • 2007
  • This paper proposed the calculation method of the avoided cost for natural gas and district heating DSM programs. And the proposed method is applied to real DSM programs. The avoided cost for natural gas consists of commodity avoided cost, supply equipment avoided cost, storage equipment avoided cost, and electric power avoided cost. In case of the district heating, avoided cost consists of heat generation equipment avoided cost, heat energy avoided cost, environment avoided cost, and electric power avoided cost. This method can be used to evaluate the benefit of DSM programs quantitatively in cost. Therefore, this method can contribute to make the cost-effectiveness evaluation system and to operate the DSM programs for natural gas and district heating effectively.

LMDI Decomposition Analysis for Electricity Consumption in Korean Manufacturing (LMDI 요인 분해분석을 이용한 우리나라 제조업 전력화 현상에 관한 연구)

  • Han, Joon
    • Journal of Energy Engineering
    • /
    • v.24 no.1
    • /
    • pp.137-148
    • /
    • 2015
  • So far, the phenomenon of "electrification" has been deepened in Korean industry and especially direct heating energy which accounted for 44.0%(2010) of total energy consumed in Korean manufacturing has been significantly electrified. This paper decomposed electricity consumption for direct heating in Korean manufacturing from 1992 to 2012 using LMDI(Log Mean Divisia Index). This paper includes 4 different factors such as electricity proportion effect, direct heating proportion effect, energy intensity effect and added value effect. And this paper compared the consumption pattern by business type. As results, electricity proportion effect had contributed the most to the increase of electricity consumption for direct heating in Korean manufacturing. And Petrol-Chemical and Iron & Steel had the most electrification of direct heating.

Prediction on Variation of Building Heating and Cooling Energy Demand According to the Climate Change Impacts in Korea (우리나라의 기후 변화 영향에 의한 건물 냉난방에너지 수요량 변화의 예측)

  • Kim, Ji-Hye;Kim, Eui-Jong;Seo, Seung-Jik
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.789-794
    • /
    • 2006
  • The potential impacts of climate change on heating and cooling energy demand were investigated by means of transient building energy simulations and hourly weather data scenarios for Inchon. Future trends for the 21 st century was assessed based oil climate change scenarios with 7 global climate models(GCMs), We constructed hourly weather data from monthly temperatures and total incident solar radiation ($W/m^2$) and then simulated heating and cooling load by Trnsys 16 for Inchon. For 2004-2080, the selected scenarios made by IPCC foresaw a $3.7-5.8^{\circ}C$rise in mean annual air temperature. In 2004-2080, the annual cooling load for a apartment with internal heat gains increased by 75-165% while the heating load fell by 52-71%. Our analysis showed widely varying shifts in future energy demand depending on the season. Heating costs will significantly decrease whereas more expensive electrical energy will be needed of air conditioning during the summer.

  • PDF

Dynamic Formation and Associated Heating of a Magnetic Loop on the Sun. II. A Characteristic of an Emerging Magnetic Loop with the Effective Footpoint Heating Source

  • Tetsuya Magara;Yeonwoo Jang;Donghui Son
    • Journal of The Korean Astronomical Society
    • /
    • v.56 no.2
    • /
    • pp.225-229
    • /
    • 2023
  • We investigated an emerging magnetic loop dynamically formed on the Sun, which has the effective footpoint heating source that may play a key role in heating a solar atmosphere with free magnetic energy in it. It is suggested that the heating source could be related to local compression of a plasma in the emerging loop by means of Lorentz force, which converts the magnetic energy to the internal energy of the plasma that is used to reaccelerate a decelerated downflow along the loop, eventually generating the source when the kinetic energy of the downflow is thermalized. By analyzing very high-cadense data obtained from a magnetohydrodynamic simulation, we demonstrate how the local compression is activated to trigger the generation of the heating source. This reveals a characteristic of the emerging loop that experiences a dynamic loop-loop interaction, which causes the local compression and makes the plasma gain the internal energy converted from the magnetic energy in the atmosphere. What determines the characteristic that could distinguish an illuminated emerging loop from a nonilluminated one is discussed.

Electric Fan Heater Design for Eco-Energy Saving (친환경 에너지 절감형 전기온풍기 기구설계)

  • Sul, Yong-Tae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.4
    • /
    • pp.474-479
    • /
    • 2016
  • As the Eco-energy is recently required, electrical energy is fast increased. Several induction heating methods are attractive for Eco-energy and energy saving. In this paper, electrical fan heater was designed and developed with new concept for energy saving by electromagnetic induction heating. Proposed system was composed of three module, blast part, induction heating part and power transformation part. Induction heating method was adapted for heating and the resonant inverter was used for increasing of the power transformation efficiency. Full-bridge resonant inverter was adopted to resonant inverter. This system was composed of induction heating part made with metal(SUS 40 series), and power transformation part made with rectifier module, filter module and resonant inverter. From these results, the proposed new electric heater could be saved the energy from faster increasing the temperature compared to commercial gas and other electric heater. This electrical fan heater is possible to be used in field of home, commercial and agricultural area for eco-energy saving heater.

The Strengthening Effect of the Heating and Cooling Load on the Thermal Performance in the Housing Unit (주택에서의 단열성능 강화가 냉난방부하에 미치는 영향)

  • Lee, Jun-Gi;Kim, Sung-Hoon;Lee, Gab-Taek;Lee, Kyung-Hee
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.28 no.12
    • /
    • pp.483-488
    • /
    • 2016
  • In this study, we chose the rural house as a standard model. In order to review the energy difference of cooling and heating loads, we changed the thermal transmittance standards. By using the thermal transmittance standard in 2011 as the Basic CASE, the thermal transmittance standard in 2013 as well as 2016, and the thermal transmittance standard of passive houses, we compared the results with regard to the cooling and heating energy load. Because of the heat loss, it can be confirmed that with an improved thermal performance of the building structure, the maximum increase of the cooling energy load was 36 kWh from June to September. Because of the heat loss, it was also confirmed that with the improved thermal performance of a building structure, the maximum decrease of the heating energy load is 1,498 kWh from November to April. Even though the heat loss of the building structure could decrease the cooling energy load by improving thermal transmittance standards in Korea, the energy saving performance is worse than the situation of heating energy load in heating period. Compared with CASE 1 and CASE 2, as well as CASE 1 and CASE 3, we CASE 3 was found to have the best energy saving rate when compared to the other cases : CASE 3 increased by 1,452 kWh and CASE 2 by 588 kWh, because the window thermal transmittance standard of 2016 was added.