• 제목/요약/키워드: Heating Efficiency

검색결과 1,215건 처리시간 0.026초

열 파이프용 수평 축열조에서의 열 입력이 축열에 미치는 영향 (An Effect of Heat Input on Thermal Storage for Horizontal Thermal Storage Tank with Heat pipe)

  • 박이동;정운철
    • 태양에너지
    • /
    • 제16권2호
    • /
    • pp.39-47
    • /
    • 1996
  • 본 연구에서는 실제 열 파이프용 수평 축열조에서 등간격인 heating pad 수와 위치 및 공급열량을 변화시키면서 축열조내의 순수 Plume 유동특성을 파악하였다. 동일한 heating pad수를 가지고 집중 배치 형태와 분산 배치 형태를 취하였을 때 집중 배치 형태로 취하는 것이 $5{\sim}6%$ 정도의 더 높은 효율을 얻었다. 따라서 열 파이프용 수평 축열조에서 heating pad를 장착할 때 동일한 heating pad의 수에서는 집중(concentration)배치형태로 설계하는 것이 효과적임을 알 수 있다.

  • PDF

중앙난방방식을 지역난방.소형열병합난방방식으로 전환시의 경제성 비교 분석 (Analysis for the Economic efficiency of District Heating and Gas Engine Co-generation System comparing with Central Heating System)

  • 김규생;이상혁;홍경표;원영재
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2007년도 동계학술발표대회 논문집
    • /
    • pp.459-465
    • /
    • 2007
  • This study was conducted to calculate the LCC of a apartment complex with a type of heating system, district heating and cogeneration system. For the purpose of analyzing LCC according to size of apartment complex, 500, 1,500 and 4,000 houses of model apartment selected. This research performs design of heating system and the life cycle cost analysis including an initial cost, energy cost, maintenance and operation cost, replacement cost and renovation cost during the project period(15years). According to the calculated results, 1) Initial cost of cogeneration system with 500, 1500 and 4000 houses is higher than district heating system each of 20%, 13%, 12%. 2) In case of cogeneration system, the payback period by electric generation is 5.21, 4.92 and 4.47 years and saving cost was calculated 29 billion won, 94 billion won and 262 billion won after payback period. 3) Cogeneration system LCC was 1.12, 1.07 and 1.06 times larger than district system with the size of apartment complex. According to the case of this study district heating system is more efficient than cogeneration system in terms of the reduction of LCC. 4) Gas Engine Co-generation System is more efficient than other systems because it can collect progressive part from electric charge progressive stage system. However, the efficiency is decreasing because of raising of fuel bills(LNG) and lowering of power rate for house use. Especially the engine is foreign-made so the cost of maintenance and repair is high and the technical expert is short. 5) District heating is also affected by fuel bills so we should improve energy efficiency through recovering of waste heat(incineration heat, etc.). Also, we should supply district cooling on the pattern of heat using of let the temperature high in winter and low in summer.

  • PDF

수산소 혼합가스를 이용한 선상가열 특성 (The Characteristics of Line Heating Using Hydrox Gas)

  • 김홍건;곽이구
    • 한국생산제조학회지
    • /
    • 제20권4호
    • /
    • pp.407-411
    • /
    • 2011
  • The technology of line heating has evolved in various methods. Among them, fossil fuels like ethylene gas and LPG(Liquid Petroleum Gas) are widely used due to their simple utility. In the meantime, the technology implementing high frequency for line heating has also been developed continually, but its manufacturing technology or application includes lots of problems by now. One of the main characteristics of line heating using conventional technolob'Y is the quenching effect followed by heating process. On the other hand, hydrox gas which is mixed by hydrogen and oxygen is a prominent candidate for an application without above shortcomings. Especially, it is found that line heating using hydrox gas is tremendously effective taking low cost as well as low noise. In this paper, a small cell with high efficiency which can minimize installing space is developed to deal with the problem installing in narrow place. Experiments to prove the validation, efficiency and effectiveness is carried out by characterizing in the line heating of steel. It is found that the energy saving of using hydrox gas for line heating is significant and that the deviation performance is reduced by 78~89%. Furthermore, the noise is also reduced as amount of 18.3% though the heating time is not too different.

지역난방 중온수 펌프의 현장 성능평가를 위한 열역학적 측정법 적용 (Aplication of the Thermodynamic Measurement Method for On-site Performance Evaluation of Hot Water Pumps Used in District Heating)

  • 박철규;유호선
    • 플랜트 저널
    • /
    • 제17권1호
    • /
    • pp.50-57
    • /
    • 2021
  • 수력학적 효율측정 방법만으로는 펌프시스템 부속장치들의 개별효율 및 펌프 자체효율을 명확하게 산출해내기 매우 어렵다. 이에 본 연구에서는 국내 최초로 지역난방 중온수용 펌프시스템에 최신 열역학적 펌프 효율측정방법을 도입, 수력학적 방법과의 효율 병행측정 결과를 검토하였고, 그 결과 기존 수력학적 펌프효율 측정방법만으로는 데이터 불확실성이 높은 반면, 열역학적 및 수력학적 방법 병행측정 데이터를 적용한 펌프 및 유체커플링 효율값은 상호보완적 역할수행에 의해 펌프성능 측정방법의 신뢰성 및 적정성이 검증되는 의미 있는 결과를 도출할 수 있었다. 또한, 지역난방시스템에 열역학적 펌프효율 측정방법을 적용한 결과, 최대 120 ℃ 고온 환경에도 불구, 매우 안정적인 데이터 측정 및 측정장비의 내구성이 검증되는 등 열역학적 측정방법의 신뢰성을 검증할 수 있었다.

90kW급 우드칩 온수 보일러 특성 및 성능 시험 (Measurement of Efficiency and Flue Gas Concentration of 90 kW Woodchip Boiler)

  • 강새별;김종진;최규성;이웅진
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2008년도 춘계학술대회 논문집
    • /
    • pp.194-197
    • /
    • 2008
  • We measured the efficiency and flue gas concentration of a 90kW woodchip boiler which is for heating water of lodging. At nominal operating condition, the fuel, woodchip is fed into the boiler at a rate of 22.6 kg/h. In order to determine the efficiency of the boiler, we measured the water flow rate, woodchip flow rate, heating value and water content of woodchip, temperature of inlet and outlet of heating water. The results of test show that the power output of the woodchip boiler is 90.0 kW(77,400 kcal/h) and the thermal efficiency of the boiler is 88.5%. By using a gas analyser, flue gas concentrations are measured. The results show that O2 in the flue gas is 10.2%, CO concentration is 393 ppm and NOx concentration is 74 ppm.

  • PDF

실험을 통한 건물통합형 태양광·열(BIPVT) 시스템의 난방성능 평가 (The Heating Performance Evaluation of Heating System with Building-Integrated Photovoltaic/Thermal Collectors)

  • 정선옥;김진희;김지성;박세현;김준태
    • 한국태양에너지학회 논문집
    • /
    • 제32권6호
    • /
    • pp.113-119
    • /
    • 2012
  • The heat from PV modules should be removed for better electrical performance, and can be converted into useful thermal energy. A photovoltaic-thermal(PVT) module is a combination of PV module with a solar thermal collector which forms one device that produce thermal energy as well as electricity. In many studies various water type PVT collectors have been proposed in effort to increase their electrical and thermal efficiency. The aim of this study is to evaluate the heating performance of heating system combined with PVT collectors that on integrated building roof. For this study, the BIPVT system of 1.5kWp was installed at the experimental house, and it was incorporated with its heating system. From the experimental results, the solar fraction of the heating system with BIPVT was 15%. It was also found that was analyzed that the heating energy for the house can be reduced by 47%, as the heat gained from BIPVT system pre-heated the water used for heating system.

마이크로파 및 기존 가열 방법에 의한 제올라이트 NaY의 합성 (Synthesis of NaY Zeolites by Microwave and Conventional Heating)

  • 최고열
    • 공업화학
    • /
    • 제18권4호
    • /
    • pp.344-349
    • /
    • 2007
  • 마이크로파 가열(microwave heating)에 의하여 제올라이트 NaY를 합성하였으며, 그 결과를 기존의 가열 방법(conventional heating)에 의하여 합성한 결과와 비교하였다. 같은 승온 속도를 사용하였을 때는 마이크로파에 의하여 가열하였을 때가 기존의 가열 방법에 비하여 NaY 결정 생성의 유도 기간(induction period)이 감소하였으며 결정의 생성 속도가 증가하였다. 또한 마이크로파의 사용 여부와 관계없이 승온 속도가 빠를 때도 유도 기간이 감소하고 결정 생성 속도가 증가하였다. 빠른 승온 속도에서 합성하였을 때 최종 결정의 크기가 크며, 이는 마이크로파의 사용에 의하여 더욱 증가하였다. 빠른 승온 속도에서는 반응 시간이 짧아져서 NaY의 합성에 소모되는 에너지 소모량은 감소하였다. 본 연구의 조건에서는 에틸렌글리 콜조(ethylene glycol bath)를 사용한 기존 가열 방법에서의 에너지 소모량이 마이크로파 가열보다 적게 나타났는데, 이는 마이크로파 에너지를 사용하는 것이 항상 효율적인 것만은 아니라는 것을 말해준다. 그러나 승온 속도를 적절히 조절하면 마이크로파 가열에 의해서 에너지 면에서 보다 효율적으로 NaY를 합성할 수 있다는 것을 알 수 있었다

히트펌프 냉·난방 시스템의 온도 자동제어에 관한 연구 (A Study for Automatic Temperature Control of the Heating-Cooling System with Heat Pump)

  • 구창대
    • 한국산업융합학회 논문집
    • /
    • 제14권4호
    • /
    • pp.143-149
    • /
    • 2011
  • The experiment has been investigated the room temperature change under adjusting 4-way valve which was installed for cooling and heating switch. Beside, the temperature of heat pump was controlled automatically for autonomously adjusting temperature and maintaining a constant room temperature. As results, Inlet & outlet temperature differences of compressor are $95^{\circ}C$ in cooling condition and $57^{\circ}C$ in heating condition. Therefore, Compression efficiency of cooling effect is higher than heating effect. In addition, Heat exchange effect of Cooling system condition is higher than heating system. This results can be used for studying about automatic temperature control of cooling and heating system with heat pump and 4way valve.

운량에 따른 태양열 시스템의 성능 분석에 관한 연구 (Study on the Performance Analysis of Solar Heating System with Cloud Cover)

  • 김원석;표종현;조홍현;류남진
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2009년도 하계학술발표대회 논문집
    • /
    • pp.1215-1219
    • /
    • 2009
  • In this study, the performance of solar assisted hybrid heat pump system with cloud cover were analyzed by using experimental method in spring season. It was consisted of concentric evacuated tube solar collector, heat medium tank, heat storage tank, heat pump, and so on. As a result, the solar radiation should be maintained over $4.1\;MJ/m^2$ in order to operate solar heating system for heating. Solar heat of collector wasn't affected by ambient temperature, but cloud cover has a big effect to collector efficiency. In addition, the collector efficiency is about 50-60%, and solar fraction is 40% for this system.

  • PDF

Development of Hybrid Induction Heating System for Laser Printer

  • Chae Young-Min;Kwon Joong-Gi;Han Sang-Yong;Sung Hwan-Ho
    • Journal of Power Electronics
    • /
    • 제6권2호
    • /
    • pp.178-185
    • /
    • 2006
  • Recently, the demand for the development of high quality and high-speed laser printers and efficient power utilization has required. Among complicated electro-mechanic devices in laser printers, the toner-fusing unit consumes above 90[%] of all electrical energy needed for printing devices. Therefore, the development of a more effective energy-saving toner fusing process becomes a significant task in great demand. Generally, there are several ways to implement a fusing unit. Among them this paper presents a new induction heating method. The proposed induction heating method enables the increase of coupling coefficient between heating coil and heat roller which also increases total energy transfer efficiency. Therefore, the proposed IH (Induction Heating) inverter system provides very fast W.U.T. (Warm UP Time) as well as higher efficiency. Through experimental results, the proposed control system is verified.