• Title/Summary/Keyword: Heater Power

Search Result 473, Processing Time 0.024 seconds

Design of Low Consume Power Ty7e Micro-heaters Using SOl and Trench Structures (SOI 및 TRENCH 구조를 이용한 저소비 전력형 미세발열체의 설계)

  • Jang, Soo;Hong, Seok-Woo;Lee, Jong-Chun;Chung, Gwiy-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.350-353
    • /
    • 1999
  • This Paper Presents the optimized design of micro-heaters using 501(Si-on-insulator) substrate and oxide-filled trench structure In order to justify a lumped model approximation and thermal boundary assumptions, two-dimensional FDM(finite difference among which conduction is the dominant heat dissipation path. Compared with no-trenchs on the SOI structure, the micro-heaters with trench structures has properties of low heater loss and good thermal isolation. The simulation results show that the heater loss decreases as the number. width and distance of trenchs increases.

  • PDF

Development of Auxiliary Heater to Improve Korean Medical Evacuation Helicopter Winter Operational Capability

  • Kim, Se Un;Koo, Jeong Mo;Seo, Jeong Mi;Jeong, Won Chae
    • Journal of Aerospace System Engineering
    • /
    • v.14 no.6
    • /
    • pp.10-17
    • /
    • 2020
  • The Korean medical evacuation helicopter was developed based on the Korean Utility Helicopter (hereafter referred to as 'Surion'). It uses an auxiliary power unit and engine for heating during winter operation. The helicopter maintains the internal temperature of the aircraft using its bleed air to satisfy its operational capability. However, due to the air inflow through the gap between the aircraft skin and door, additional heating for operating the portable medical equipment and preventing hypothermia in evacuated patients is required. Accordingly, an electric auxiliary heater was developed for additional heating during winter operation, and environmental, durability, and performance tests were conducted per MIL-STD-810G and MIL-STD-461F. The auxiliary heater was verified per the tailored airworthiness certification criteria.

Power System Design for Next Generation LEO Satellite Application (차세대 저궤도 소형위성 적용을 위한 전력시스템 설계)

  • Park, Sung-Woo;Park, Hee-Sung;Jang, Jin-Beak;Jan, Sung-Soo
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.283-287
    • /
    • 2005
  • In this paper, one general approach is proposed for the design of power system that can be applicable for next generation LEO satellite application. The power system consists of solar panels, battery, and power control and distribution unit(PCDU). The PCDU contains solar array modules, battery interface modules, low-voltage power distribution modules, high-voltage distribution modules, heater power distribution modules, on-board computer interface modules, and internal DC/DC converter modules. The PCDU plays roles of protection of battery against overcharge by active control of solar array generated power, distribution of unregulated electrical power via controlled outlets to bus and instrument units, distribution of regulated electrical power to selected bus and instrument units, and provision of status monitoring and telecommand interface allowing the system and ground operate the power system, evaluate its performance and initiate appropriate countermeasures in case of abnormal conditions. We review the functional schemes of the main constitutes of the PCDU such as the battery interface module, the auxiliary supply module, solar array regulators with maximum power point tracking(MPPT) technology, heater power distribution modules, spacecraft unit power distribution modules, and instrument power distribution module.

  • PDF

Performance Analysis on CHP Plant using Back Pressure Turbine according to Return Temperature Variation (배압터빈을 사용하는 열병합발전소의 열 회수 온도에 따른 성능특성 분석)

  • Im, Shin Young;Lee, Jong Jun;Jeon, Young-Shin;Kim, Hyung-Taek
    • The KSFM Journal of Fluid Machinery
    • /
    • v.19 no.6
    • /
    • pp.26-33
    • /
    • 2016
  • Combined heat and power (CHP) system is one of the power generation system which can generate both electricity and heat. Generally, mid-size and big-size CHP plant in Korea generate electricity from gas turbine and steam turbine, then supply heat from exhaust gas. Actually, CHP can supply heat using district heater which is located at low pressure turbine exit or inlet. When the district heater locates after low pressure turbine, which called back pressure type turbine, there need neither condenser nor mode change operating control logic. When the district heater locates in front of low pressure turbine or uses low pressure turbine extraction steam flow, which calls condensing type turbine, which kind of turbine requires condenser. In this case, mode change operation methods are used for generating maximum electricity or maximum heat according to demanding the seasonal electricity and heat.

A Study on the Fluid Mixing Analysis for Proving Shell Wall Thinning of a Feedwater Heater (급수가열기 동체 감육 현상 규명을 위한 유동해석 연구)

  • Shin, Min-Ho;Hwang, Kyeong-Mo;Kim, Kyung-Hoon
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.2017-2022
    • /
    • 2004
  • There are multistage preheaters in the power generation plan to improve the thermal efficiency of the plant and to prevent the components from the thermal shock. The energy source of these heaters comes from the extracted two phase fluid of working system. These two-phase fluid can cause the so-called Flow Accelerated Corrosion(FAC) in the extracting piping and the bubble plate of the heater for example, in case of point Beach Nuclear Power Plant and in the Wolsung Nuclear Power Plant. The FAC is due to the mass transport of the thin oxide layer by the convection. FAC is dependent on many parameters such as the operation temperature, void fraction, the fluid velocity and pH of fluid and so on. Therefore, in this paper velocity was calculated by FLUENT code in order to find out the root cause of the wall thinning of the feedwater heaters. It also includeed in the fluid mixing analysis model are around the number 5A feedwater heater shell including the extraction pipeline. To identify the relation between the local velocities and wall thinning, the local velocities according to the analysis results were compared with distribution of the shell wall thicknes by ultrasonic test.

  • PDF

The Fabrication of Micro-Heaters with Low-Power Consumption Using SOI and Trench Structures

  • Chung, Gwiy-Sang;Hong, Seok-Woo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.05a
    • /
    • pp.197-201
    • /
    • 2002
  • This paper presents optimized design, fabrication and thermal characteristics of micro-heaters for thermal MEMS (micro electro mechanical system) applications using SOI and trench structures. The micro-heaters are based on a thermal measurement principle and contains thermal isolation regions of 10 ${\mu}m$-thick Si membranes consisting of oxide-filled trenches in the SOI membrane rim. The micro-heaters were fabricated with Pt-RTD on the same substrate via MgO buff layer between Pt thin-film and $SiO_2$ layer. The thermal characteristics of micro-heater with trench-free SOI membrane structure was $280^{\circ}C$ at input power 0.9 W; in the presence of 10 trenches, it was $580^{\circ}C$ due to reduction of the external thermal loss. Therefore, a micro-heater with trenches in SOI membrane rim structure provides a powerful and versatile alternative technology for enhancing the performance of micro-thermal sensors and actuators.

  • PDF

A Study on the Thermoacoustic Oscillation of an Air Column with Variable Cross Section Area (단면 변화가 있는 기주의 열음향진동에 관한 연구)

  • Kwon, Young Pil;Hong, Ha Pyo
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.17 no.2
    • /
    • pp.131-139
    • /
    • 1988
  • The thermoacoustic oscillation induced in an air column with variable cross section area is investigated theoretically and experimentally. The onset condition of the oscillation is derived by equating the acoustic power production to the power dissipation. The power production at the heater is predicted by using the efficiency factor obtained by heat transfer analysis for a single wire in a uniform cross flow and considering the interference between heater wires. The power dissipation is estimated by measuring the attenuating coefficient from the pressure decay curve. The theoretical prediction to the onset condition of the oscillation is confirmed experimentally. The effect of the variation of the column cross section area on the onset condition is presented.

  • PDF

A Study on Turbine Auxiliary Devices in a Thermal Power Plant (화력발전소 터빈 보조기기 제어 관한 고찰)

  • Jeong, Chang-Ki;Choi, In-Kyu
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1667-1668
    • /
    • 2008
  • There are three main devices such as boiler producing steam, turbine driving generator and generator producing electricity. An electrical generator in power plant is driven and maintained its speed at rated by steam turbine which is coupled into generator directly. Turbine auxiliary devices such as condenser, deaerator, feed water heater, gland steam condenser, pump recirculation equipment, feed water pump, and so on should be operated well so that the steam turbine exert its maximum efficiency. There are many control loop such as hot well level and condenser recirculation, deaerator level, pegging steam pressure, feed water heater level, feed water pump recirculation. In this paper condenser level control and deaerator level control are going to be described.

  • PDF

Operation and Improvement Cases of FGD Non-leakage Type Gas-Gas Heater(GGH) for Coal Fired Power Plants (석탄화력 탈황설비 Non-leakage Type Gas-Gas Heater(GGH) 운영 및 개선사례)

  • Seong, Kijong;Lee, Changsik
    • Journal of the Korean Society of Combustion
    • /
    • v.22 no.4
    • /
    • pp.35-42
    • /
    • 2017
  • This case covers the issues related to the operation problem, cause analysis and improvement cases of the FGD that employed the non-leakage type GGH in coal-fired power plant for the first time in Korea. In the Cooler, there was a main problem that the tube is damaged by the ash cutting due to the high velocity of flue gas in the duct and by the weak wear resistance of material. In the Reheater, there was a main problem that the tube was corroded due to chlorine and sulfur in the circumstance of the low temperature. In order to solve those problems, we have improved the Reheater tube and tube fins by coating enamel to reduce corrosion rate.

Thermal Characteristics of an Electric Clothes Dryer (의류건조기의 열적 특성에 관한 실험)

  • Kim, Jun-Ho;Jang, Seok-Pil;Choi, Chul-Jin;Hwang, Kyo-Sik;Lee, Ho-Jae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.8
    • /
    • pp.629-634
    • /
    • 2009
  • In this paper, drying mechanism is analyzed for improving the energy efficiency of an electric clothes dryer which consumes more electric power than other appliances. For the purpose, characteristic curves of the dryer such as temperature, relative humidity, evaporation rate, mass transfer coefficient, remaining moisture content curves are experimentally obtained. Based on the experimental results and analysis of drying mechanism, the effect of power of a heater and heat loss on the power consumption of an electric clothes dryer are systematically presented. These results demonstrate the feasibility of controlling heat loss at the heater as well as the backduct component to decrease the power consumption of an electric clothes dryer.