• Title/Summary/Keyword: Heated Tube

Search Result 192, Processing Time 0.022 seconds

Preparation of Titanyl Chlorde (鹽化티타닐 製造에 關한 硏究)

  • Chyun, Byong-Doo;Shin, Yoon-Kyung
    • Journal of the Korean Chemical Society
    • /
    • v.4 no.1
    • /
    • pp.15-17
    • /
    • 1957
  • 1. Preparation of Titanium tetrachloride; The following precesses were strictly followed as the preliminary step to obtain pure $TiOCl_2$, titanyl chloride; First, pure Titanium Oxide mixed with carbon is rolled into pills. After drying up perfectly, these pills are heated at 900∼1000${\circ}C$. And then the pills are subjected to the flow of $Cl_2$ gas in a quartz tube heated to 900-1000${\circ}C$. Thus Titanium tetrachloride is obtained. 2. Preparation of $TiOCl_2$ ; Yellowish trobrown solution is made by pouring 80 g of conc. HCl (sp.gr. 1.19) to 45 gr of Titanium tetrachloride (approx. 2 times of theoretical amount). Then this solution is kept settled for 5-days in a desiccator filled with phosphorous pentoxide at room temperature. As the colorless amorphous solid thus obtained is washed with aceton, 36.5 g of the pure salt are obtained. 3. Determination of composition. The analysis of the sample taken from the deposit desiccated gives the following data; (A) Qualitative analysis; a) $Ti(OH)_4$ is precipitated by adding NaOH in water solution of the salt. b) Adding $AgNO_3$ solution, the water solution of the salt gives white precipitate of AgCl. c) When acid and $H_2O_2$ are added, the solution turns its color to redish brown (This proves that $TiO^{++}$ was converted into $TiO^{++}$ by oxidation of $H_2O_2$. (B) Quantitative analysis; a) $Ti(OH)_4$ precipitated by $10{\%}$ NaOH isalitatsubjected consecutively to the filtration and ignition in porcelain crucible at approx. 1000${\circ}C$. , then $TiO_2$ thus formed is weighed and calculated into Ti content. b) Chlorine involved in water solution of the salt is determined by Vorhardt method. Result: The values obtained from previous analysis, devied by their atomic weight gives the following composition: Ti : Cl = 1 : 2 Therefore $TiOCl_2$ should be given as its molecular formula. 4. Summary. When $TiCl_4$ is additated into conc. HCl, $TiO^{++}$ formed exists as a stable form, and forms $TiOCl_2$. However $TiOCl_2$ is unstable to heating. When the temperature is raised to $65{\circ}C$the decomposition of the solution is accelerated, and gives $TiO_2$ aq. $TiOCl_2$ in addition is highly hygroscopic.

  • PDF

Characteristics of Background Nanoparticle Concentration in a TiO2 Manufacturing Laboratory (TiO2 제조 실험실에서 나노입자의 배경농도 특징)

  • Park, Seung-Ho;Jung, Jae Hee;Lee, Seung-Bok;Bae, Gwi-Nam;Jie, Hyun Seock;Cho, So-Hye
    • Particle and aerosol research
    • /
    • v.7 no.4
    • /
    • pp.113-121
    • /
    • 2011
  • The aerosol nanoparticles are suspected to be exposed to workers in nanomaterial manufacturing facilities. However, the exposure assessment method has not been established. One of important issues is to characterize background level of nanoparticles in workplaces. In this study, intensive aerosol measurements were made at a $TiO_2$ manufacturing laboratory for five consecutive days in May of 2010. The $TiO_2$ nanoparticles were manufactured by the thermal-condensation process in a heated tube furnace. The particle number size distribution was measured using a scanning mobility particle sizer every 5 min, in order to detect particles ranging from 14.5 to 664 nm in diameter. Total particle number concentration shows a severe diurnal variation irrespective of manufacturing process, which was governed by nanoparticles smaller than 50 nm in diameter. During the background monitoring periods, significant peak concentrations were observed between 2 p.m. and 3 p.m. due to the infiltration of secondary aerosol particles formed by photochemical smog. Although significant increase in nanoparticle concentration was also observed during the manufacturing process twice among three times, these particle peak concentrations were lower than those observed during the background measurement. It is suggested that the investigation of background particle contamination is needed prior to conducting main exposure assessment in nanomaterial manufacturing workplaces or laboratories.

The Effect of Promoters Addition on NOx Removal by $NH_3$ over V$V_2O_5/TiO_2$

  • Lee, Keon-Joo
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.18 no.E1
    • /
    • pp.29-36
    • /
    • 2002
  • The selective catalytic reduction (SCR) reaction of promoter catalysts was investigated in this study. A pure anatase type of TiO$_2$ was used as support. Activation measurement of prepared catalysts was practiced on a fixed reactor packing by the glass bead after filling up catalysts in 1/4 inch stainless tube. The reaction temperature was measured by K-type thermocouple and catalyst was heated by electric furnace. The standard compositions of the simulated flue gas mixture in this study were as follows: NO 1,780ppm, NH$_3$1,780ppm, $O_2$1% and $N_2$ as balance gas. In this study, gas analyzer was used to measure the outgassing gas. Catalyst bed was handled for 1hr at 45$0^{\circ}C$, and the reactivity of the various catalyst was determined in a wide temperature range. Conversion of NH$_3$/NO ratio and of $O_2$ concentration was practiced at 1,1.5 and 2, respectively. The respective space velocity were as follows . 10,000, 15,000 and 17,000 hr-1. It was found that the maximum conversion temperature range was in a 5$0^{\circ}C$. It was also found toi be very sensitive at space velocity, $O_2$ concentration, and NH$_3$/NO ratio. We also noticed that the maximum conversion temperature of (W, Mo, Sn) -V$_2$O$_{5}$/TiO$_2$ catalysts was broad. Specially WO$_3$-V$_2$O$_{5}$TiO$_2$2 catalyst appeared nearly 100% conversion at not only above 30$0^{\circ}C$ ut also below 25$0^{\circ}C$. At over 30$0^{\circ}C$, NH$_3$ oxidation decreased with decrease of surface excess oxygen. In addition, WO$_3$-V$_2$O$_{5}$TiO$_2$ catalyst did not appear to affect space velocity, $O_2$ concentration, and NH$_3$/NO ratio.ratio.

Gas sensing characteristics of thin film SnO2 sensors with different pretreatments (예비 처리 방법에 따른 박막 SnO2 센서의 가스 감응 특성)

  • Yun, Kwang-Hyun;Kim, Jong-Won;Rue, Gi-Hong;Huh, Jeung-Soo
    • Journal of Sensor Science and Technology
    • /
    • v.15 no.5
    • /
    • pp.309-316
    • /
    • 2006
  • The $SnO_{2}$ thin film sensors were fabricated by a thermal oxidation method. $SnO_{2}$ thin film sensors were treated in $N_{2}$ atmosphere. The sensors with $O_{2}$ treatment after $N_{2}$ treatment showed 70 % sensitivity for 1 ppm $H_{2}S$ gas, which is higher than the sensors with only $O_{2}$ treatment. The Ni metal was evaporated on Sn thin film on the $Al_{2}O_{3}$ substrate. And the sensor was heated to grow the Sn nanowire in the tube furnace with $N_{2}$ atmosphere. Sn nanowire was thermally oxidized in $O_{2}$ environments. The sensitivity of $SnO_{2}$ nanowire sensor was measured at 500 ppb $H_{2}S$ gas. The selectivity of $SnO_{2}$ nanowire sensor compared with thin film and thick film $SnO_{2}$ was measured for $H_{2}S$, CO, and $NH_{3}$ in this study.

Thermal Performance Evaluation Monitoring Study of Transparent Insulation Wall System (투명단열 축열벽 시스템의 열성능 평가 실험 연구)

  • Kim, B.S.;Yoon, J.H.;Yoon, Y.J.;Baek, N.C.;Lee, J.S.
    • Journal of the Korean Solar Energy Society
    • /
    • v.23 no.1
    • /
    • pp.1-8
    • /
    • 2003
  • Various efforts to combine new high-tech materials with solar system have been progressed nowadays in order to improve the performance of the existing passive solar system. TIM(Transparent Insulation Material) replacing the conventional outer building envelope glazing as well as the wall is good example for this trend. TI integrated wall is a thermal mass wall with a special shaped TIM instead of using typical envelope materials The tested TIM type is a small(diameter 4mm and thickness 50mm) capillary tube of Okalux model and cement brick(density 1500kg/m3). The purpose of this study was to analyze the thermal performance through the actual measurements performed in a test cell. This study was carried out to justify the following issues. 1) the impact of Tl-wall over the temperature variations 2) the impact of mass wall surface absorptance over the transient thermal behavior and 3) the impact of thermal mass wall thickness over the temperature variations. Finally, as results indicated that the peak time of room temperature was shifted about one hour early when absorptance of thermal mass wall changed from 60% to 95% for the 190mm thickness thermal mass wall test case. the temperature difference of both surfaces of thermal mass wall surface showed about $23^{\circ}C$ during a day of March for the 380mm thickness thermal mass wall case. However, the thermal mass wall was over-heated by outside temperature and solar radiation in a day of May the temperature difference of both surfaces of thermal mass wall surface was indicated $10^{\circ}C$ and inside temperature was observed more than average 22C.

Studies on Simultaneous Analysis of Organophosphorus Pesticide Residues in Crops by Gas-Liquid Chromatography (II). Separation of Pesticides by Capillary Column (기체-액체 크로마토그래피에 의한 농작물 중 유기인제 잔류농약의 동시 분석에 관한 연구 (제 2 보). 모세관 컬럼에 의한 분리)

  • Kim, Taek-Jae;Eo, Yun-Woo;Kim, Young-Sang
    • Journal of the Korean Chemical Society
    • /
    • v.31 no.3
    • /
    • pp.236-243
    • /
    • 1987
  • The optimum resolution condition of 11 organophosphorus pesticides by gas-liquid chromatography was studied using a capillary column. The injection modes and types of vaporization tubes were evaluated in relation to pesticide analysis. The best reproducibility of peak heights of pesticides was obtained by the split mode with the vaporization tube packed with quartz wool. A 25m SE-30 capillary column provided better resolution than SE-54 column for their optimum resolution. The column at $200^{\circ}C$ initially was heated by $5^{\circ}C/min\;to\;230^{\circ}C$ followed by $10^{\circ}C/min\;to\;270^{\circ}C$ and the temperatures were held constant for 5 minutes at $230^{\circ}C\;and\;270^{\circ}C$, respectively. The relative standard deviations of their retention times were less than 0.19%.

  • PDF

The effect of cooling rate on the nuclei of OISF formation in Si single crystals (실리콘 단결정에서 산화적층결함의 핵생성에 미치는 냉각속도의 영향)

  • 하태석;김병국;김종관;윤종규
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.6 no.3
    • /
    • pp.360-367
    • /
    • 1996
  • The OISF (Oxidation Induced Stacking Fault)is expected to affect the electrical properties in Si single crystals, and the nuclei of OISF are believed to be formed during the crystal growing process. Initial oxygen concentration, dopant type and its density, and cooling rate are regareded as major factors on OISF formation. In this study, the variations of OISF density under various cooling rate were investigated. Si single crystal was heated to $1400^{\circ}C$ in Ar ambient and cooled down to room temperature at different cooling rate, using horizontal tube furnace. After that, they were oxidized at $1150^{\circ}C$, and then, OISF was observed with optical microscope. The relation between oxide procipitates and OISF nucleation was investigated by FTIR analysis. As a result, it was found that there exists the intermediate cooling rate range in which OISF nucleation is highly enhanced. And also, it was found that OISF nucleation is closely related with silicon oxide procipitation in Si single crystals.

  • PDF

The Formation of $YBa_2Cu_3O_{7-x}$(Y123) and CuO Phases in Cu-sheath YBCO Thick Films (동피복 YBCO 후막에서 $YBa_2Cu_3O_{7-x}$(Y123) 및 CuO상의 형성 기구)

  • Kim K.J.;Han S. C.;Han Y. H.;Jeong N. H.;Yun H. J.;Oh J. M.;Choi H. R.;Sung T. H.
    • Progress in Superconductivity
    • /
    • v.6 no.2
    • /
    • pp.129-132
    • /
    • 2005
  • The formation behavior of $YBa_2Cu_3O_{7-x}$(Y123) and CuO phases in the heat-treated Cu-sheathed YBCO thick films was studied. The thick films were prepared by screen-printing method using $BaCO_3$ and Y211 powders on Cu tapes. The screen-printed thick films were placed at the center of the tube furnace, heated to $930^{\circ}C$ in air atmosphere and then maintained at the temperature for 60 sec - 300 sec. The microstructure and phases formed in the thick films were investigated by using optical microscope, X-ray diffraction (XRD) and SEM image analysis. During the heat treatment, partial melting occurred rapidly in the printed layers by peritectic reaction between CuO and precursor powders, and then YBCO superconducting phases nucleated from the Cu tapes and grew in a form of thick films.

  • PDF

The Effect of HEMM on Microstructure and Mechanical Properties of Ti-Nb Alloy for Implant Biomedical Materials (생체의학 임플란트재료로서 Ti-Nb계 합금의 조직과 기계적 성질에 미치는 HEMM의 영향)

  • Woo, Kee-Do;Choi, Gab-Song;Lee, Hyun-Bum;Kim, In-Yong;Zhang, Deliang
    • Korean Journal of Materials Research
    • /
    • v.17 no.11
    • /
    • pp.587-592
    • /
    • 2007
  • Al-42wt%Nb powder was prepared by high-energy mechanical milling(HEMM). The particle size, phase transformation and microstructure of the as-milled powder were investigated by particle size distribution (PSD) analyzer, scanning electron microscopy (SEM), X-ray diffractometery (XRD), transmission electron microscopy (TEM)and differential thermal analysis (DTA). The milled powders were heated to a sintering temperature at 1000C with under vaccum with vaccum tube furnace. Microstructural examination of sintered Ti-42wt%Nb alloy using 4h-milled powder showed Ti-rich phases (${\alpha}$-Ti) which are fine and homogeneously distributed in the matrix (Nb-rich phase: ${\beta}$-Ti). The sintered Ti-42wt%Nb alloy with milled powder showed higher hardness. The microstructure of the as quenched specimens fabricated by sintering using mixed and milled powder almost are same, but the hardness of as quenched specimen fabricated by using mixed powder increased due to solution hardening of Nb in Ti matrix. The aging effect of these specimens on microstructural change and hardening is not prominent.

Experimental Study on Heat Transfer Characteristics of Ice Slurry at Direct Transportation Loop (직접 수송 루프에서 아이스슬러리의 열전달 특성에 관한 실험적 연구)

  • Lee, Dong-Won;Kim, Jeong-Bae
    • Journal of Energy Engineering
    • /
    • v.19 no.4
    • /
    • pp.234-239
    • /
    • 2010
  • Heat transfer characteristics were experimentally investigated for ice slurry which was made from 6.5% ethylene glycol-water solution flowing in the circular pipe. The test section was made of a copper tube of 13.84 mm inner diameter and 1,500 mm length. The ice slurry was heated by passing hot water through an annulus surrounding the test section. The ice packing factor(IPF) and the mass flux of the experiments were varied from 0 to 25% and from 1,000 to 3,000 kg/$m^2s$ respectively at a fixed hot water temperature and flow rate. The measured heat transfer rates increase with the mass flow rate and IPF; however the effect of IPF appears to be minor at high mass flow rate. At the low mass flow rate condition, a sharp increases in the heat transfer coefficient was observed when the IPF was above 15 ~ 20%. And finally the measured heat transfer coefficients were compared with those calculated from the correlations.