• Title/Summary/Keyword: Heat-shock protein

Search Result 607, Processing Time 0.027 seconds

A correlation of the modern scientific efficacy of Korean Red Ginseng with the legendary medicine for anti-aging and longevity (전설적 불로장생약과 고려홍삼의 현대 과학적 효능과의 연관성)

  • Yi, Yeong-Deuk
    • Journal of Ginseng Culture
    • /
    • v.2
    • /
    • pp.39-70
    • /
    • 2020
  • In this paper, through the mutual interpretation and verification of the ancient Korean history books with different origin that have been suspected as false documents, it proves that they could be logically real records and reveal that the substance of the legendary 'medicine for anti-aging and longevity', which also had been mentioned in Chinese old books, is Korean ginseng. Furthermore, with reference to the modern Y chromosomal map of the migratory routes of mankind corresponding to these routes recorded in 「Budoji」, the core history book, the formation of the four ethnic constitution groups (Sasang Constitution) based on the life style of each human group has been estimated. And the cause of Korean ginseng with fever problem for Southeast Asians is their pharmacogenomic constitution problem by protopanaxatriol (PPT) type ginsenosides in ginseng. It was resolved with over production of protopanaxdiol (PPD) type ginsenosides against PPT type in Korean red ginseng as historical or scientific point of view. In addition, by explaining that the processing method to Korean red ginseng could increase red ginseng acidic polysaccharides (RGAP), the RGAP, PPD type ginsenosides, and arginine which is originally abundant in Korean ginseng could increase the expression of the 'heat shock proteins' as a kind of chaperone in the body, this paper presents the theory allowing the scientific interpretation of the efficacy of Korean red ginseng as an 'adaptogen' or 'medicine for anti-aging and longevity'. Lastly, through the consideration of the growing environment of American ginseng and Korean ginseng, the differences are presented.

Expression of HSP90, HSP70 mRNA and Change of Plasma Cortisol and Glucose During Water Temperature Rising in Freshwater Adapted Black Porgy, Acanthopagrus schlegeli (담수 사육 감성돔, Acanthopagrus schlegeli의 수온 상승에 따른 HSP90, HSP70 mRNA의 발현 및 혈장 cortisol과 glucose 변화)

  • Choi, Cheol-Young;Min, Byung-Hwa;Kim, Na-Na;Cho, Sung-Hwoan;Chang, Young-Jin
    • Journal of Aquaculture
    • /
    • v.19 no.4
    • /
    • pp.315-322
    • /
    • 2006
  • The objective of the present study was to investigate the expression of heat shock protein 90 (HSP90) and 70 (HSP70) mRNA as cellular stress responses, the levels of plasma cortisol with glucose as neuro-endocrine stress responses during water temperature rising in freshwater adapted black porgy, Acanthopagrus schlegeli. A cDNA fragment of 891 (HSP90) and 465 (HSP70) bp was cloned from black porgy testis by Reverse transcription-polymerase chain reaction (RT-PCR) with primers designed from the conserved regions of other teleost. The PCR product of HSP90 showed very high homology to red seabream (99%), rainbow trout (95%), Atlantic salmon (94%), zebrafish (94%) HSP90, HSP70 of black porgy was also highly similar to those of rainbow trout (96%), silver seabream (95%), zebrafish (95%) HSP70. Water temperature rising ($20{\sim}30^{\circ}C$) induced elevation of HSP90 mRNA in black porgy gonad, liver, brain, intestine and kidney, whereas it resulted in an induction of the HSP70 mRNA expression in gonad only. Plasma cortisol levels increased significantly at $30^{\circ}C$ in the fish compared to those at $20^{\circ}C$. Glucose levels of the fish showed a tendency of co-increase with cortisol during water temperature rising. These results suggest that increased HSP90 mRNA in liver with plasma cortisol following heat shock may be related to increasing glucose for homeostasis in this species.

Effects of Hyperbaric Pressure on Cellular Morphology, Proliferation and Protein Expression of Jurkat Cell

  • Oh, Eun-Ha;Oh, Sang-Nam;Im, Ho-Sub;Lee, Joo-Hyun;Kim, Jin-Young;Moon, Joo-Hee;Hong, Eun-Young;Kim, Yang-Hee;Yang, Min-Ho;Lim, Yong-Chul;Park, Sun-Young;Lee, Eun-Il;Sul, Dong-Geun
    • Molecular & Cellular Toxicology
    • /
    • v.1 no.2
    • /
    • pp.116-123
    • /
    • 2005
  • The application of high pressure on cellular morphology, proliferation and protein expression of Jurkat cells (human T lymphocyte cell line) has been extensively investigated. In the present study, we manufactured a novel pressure chamber that modulates 5% $CO_{2}$, temperature and pressure (up to 3 ATA). Jurkat cells was incubated 2 ATA pressure and analyzed cellular morphology and growth using an electron microscopy and MTT assay. The cells showed the morphological changes in the cell surface, which appeared to cause a severe damage in cell membrane. The growth rate of the cells under 2 ATA pressure decreased as cultured time got increased. Furthermore, a long term exposure of high pressure on Jurkat cells may act as one of the important cellular stresses that leads to inducing cell death. Cellular proteomes were separated by 2-dimensional electrophoresis with pH 3-10 ranges of IPG Dry strips. And many proteins showed significant up-and-down expressions with hyperbaric pressure. Out of all, 10 spots were identified significantly using matrix-assisted laser desorption/ionization-time of fight (MALDI-TOF) mass spectrometry. We and found that 9 protein expressions were decreased and one protein, heat shock protein HSP 60, was increased in Jurkat cells under 2 ATA. Identified proteins were related to lipid metabolism and signal transduction.

Correlation between blood, physiological and behavioral parameters in beef calves under heat stress

  • Kim, Won Seob;Lee, Jae-Sung;Jeon, Seung Woo;Peng, Dong Qiao;Kim, Young Shin;Bae, Mun Hee;Jo, Yong Ho;Lee, Hong Gu
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.6
    • /
    • pp.919-925
    • /
    • 2018
  • Objective: The performance, health, and behaviour of cattle can be strongly affected by climate. The objective of this study was to determine the effect of heat stress on blood parameters, blood proteins (haptoglobin [Hp]; heat shock protein 70 [HSP70]), rectal temperature (RT), heart rate (HR) and rumination time in Korean native beef calves. Methods: Thirty-two Korean native beef calves were randomly assigned to 8 groups with 4 animals per group. They were kept in environmental condition with temperature-humidity index (THI) ranging from 70.01 to 87.72 in temperature-humidity controlled chamber for 7 days. Results: Their HR, RT, and serum cortisol and HSP70 levels were increased (p<0.05) in high THI compared to those at low THI. But, serum Hp level was decreased (p<0.05) in high THI compared to these at low THI. In addition, HR, RT, serum cortisol and HSP70 were positively correlated with THI ($R^2=0.8368$, p<0.01; $R^2=0.6162$, p<0.01; $R^2=0.581$, p<0.01; $R^2=0.2241$, p = 0.0062, respectively). There was also positive association between HR and cortisol ($R^2=0.4697$, p<0.01). Similarly, RT and cortisol were positively associated ($R^2=0.4581$, p<0.01). But, THI and HR were negatively correlated with Hp ($R^2=0.2157$, p = 0.02; $R^2=0.3362$, p = 0.003). Hematology and metabolites results were different among treatment groups. Standing position was higher (p<0.05) in the high THI group compared to that in the low THI group. Conclusion: Based on these results, it can be concluded that HR, RT, blood parameters (Cortisol, HSP70, Hp) and standing position are closely associated with heat stress. These parameters can be consolidated to develop THI chart for Korean native beef calves.

Identification of Potential Substrates of N-acteylglucosamine Kinase by a Proteomic Approach (프로테오믹스를 이용한 N-아세틸글루코사민 인산화효소 기질단백질의 동정)

  • Lee, HyunSook;Moon, Il Soo
    • Journal of Life Science
    • /
    • v.23 no.4
    • /
    • pp.586-594
    • /
    • 2013
  • Post-translational O-GlcNAc modification (O-GlcNAcylation) of serine or threonine is a new protein modulation mechanism. In contrast to the classical glycosylation, O-GlcNAcylation occurs in a one-step transfer of O-GlcNAc on both nuclear and cytoplasmic proteins. In contrast to the general consensus that O-GlcNAc is a final modification, a recent paper (J Proteome Res. 2011 10:2725-2733) showed the presence of O-GlcNAc-P on a synaptic assembly protein AP180. This finding raises a fundamental question about its prevalence. To address this question, we used proteomics to identify those proteins that were phospho-signal enriched by GlcNAc kinase (NAGK). Comparison of pDsRed2-$NAGK_{WT}$-transfected HEK293T cell extract with pDsRed2-$NAGK_{D107A}$-transfected control culture revealed 15 phospho-signal increased spots. Excluding those spots that had no detectable amount of protein expression yielded 7 spots, which were selected for ID determination. Among these, two duplicate spots (two $HSP90{\beta}$ and two ENO1 spots) were shown to be O-GlcNAcylated, two (dUTP nucleotidohydrolase mitochondrial isoform 2, glutathione S-transferase P) were not known to be involved in O-GlcNAcylation, and one (heat shock protein gp96 precursor or grp94) was a glycoprotein. The increase in the phospho-levels of O-GlcNAc by NAGK strongly indicates that these proteins are phosphorylated on O-GlcNAc. Our present data support the idea that O-GlcNAc is not a terminal modification.

Oxidative Stress and HSP70 Expression Upon Cerebral Isehemia-Reperfusion in Mongolian Gerbil (모래쥐에서 뇌의 허혈/재관류에 의한 산화성 스트레스 형성과 HSP70의 발현)

  • Park, Young-Mee;Kim, Chul-Hoon;Do, Yun-Jeong;Choi, Eun-Mi;Ahn, Young-Soo
    • The Korean Journal of Pharmacology
    • /
    • v.32 no.3
    • /
    • pp.335-345
    • /
    • 1996
  • A critical role of oxygen-derived free radicals has been implicated in ischemia/reperfusion (I/R)-induced brain damage. In this study, we have produced experimental I/R to the brains of Mongolian gerbil (Meriones unguiculatus) by a transient occlusion and release of the common carotid arteries. We have attempted to determine whether the oxidative stress is generated upon I/R and whether this oxidative stress is linked to the cell damage. Since hippocampus has been suggested as one of the most vulnerable regions of the brain to the oxidative stress, we analyzed samples from hippocampus in comparison with those from cortex. In addition, we have examined the expression of heat shock protein 70kD species (HSP70) in these regions in order to evaluate a possible role of this protein in I/R-induced brain damage. To determine whether the oxidative stress is produced upon I/R, we measured the glutathione oxidation, GSSG/ (GSH + 2xGSSG), as an index of oxidative stress. We found an increase of the glutathione oxidation primarily in hippocampus upon I/R. To determine whether this oxidative stress is linked to the cell damage, we measured the degree of lipid peroxidation upon I/R. We found an increase of lipid peroxidation in both regions. However, the magnitude of increases was greater in hippocampus than in cortex. In addition, we found that changes in both the magnitude and the temporal patterns of glutathione oxidation closely correlated with those of lipid peroxidation. Our study provides biochemical evidences that the oxidative stress is generated upon I/R and this oxidative stress is linked to the oxidative cell damage. Our study also provides evidences that the degree of oxidative stress as well as oxidative cell damage is greater in hippocampus than in cortex. We could not find difference in the basal level of HSP70 expression between hippocampus and cortex, indicating that the intrinsic vulnerability of hippocampus cannot be explained by the lower level of HSP70 expression. We did find, however, that the induction of HSP70 expression upon I/R was impaired in the hippocampus. This impairment appeared to be at the transcriptional level. These results suggest that the measurement of HSP70 induction may be employed as a useful predictor of differential cellular susceptibilities to the I/R-induced brain damage.

  • PDF

Expression profile of defense-related genes in response to gamma radiation stress (방사선 스트레스 반응 방어 유전자의 탐색 및 발현 분석)

  • Park, Nuri;Ha, Hye-Jeong;Subburaj, Saminathan;Choi, Seo-Hee;Jeon, Yongsam;Jin, Yong-Tae;Tu, Luhua;Kumari, Shipra;Lee, Geung-Joo
    • Journal of Plant Biotechnology
    • /
    • v.43 no.3
    • /
    • pp.359-366
    • /
    • 2016
  • Tradescantia is a perennial plant in the family of Commelinaceae. It is known to be sensitive to radiation. In this study, Tradescantia BNL 4430 was irradiated with gamma radiation at doses of 50 to 1,000 mGy in a phytotron equipped with a $^{60}Co$ radiation source at Korea Atomic Energy Research Institute, Korea. At 13 days after irradiation, we extracted RNA from irradiated floral tissues for RNA-seq. Transcriptome assembly produced a total of 77, 326 unique transcripts. In plantlets exposed to 50, 250, 500, and 1000 mGy, the numbers of up-regulated genes with more than 2-fold of expression compared that in the control were 116, 222, 246, and 308, respectively. Most of the up-regulated genes induced by 50 mGy were heat shock proteins (HSPs) such as HSP 70, indicating that protein misfolding, aggregation, and translocation might have occurred during radiation stress. Similarly, highly up-regulated transcripts of the IQ-domain 6 were induced by 250 mGy, KAR-UP oxidoreductase 1 was induced by 500 mGy, and zinc transporter 1 precursor was induced by 1000 mGy. Reverse transcriptase (RT) PCR and quantitative real time PCR (qRT-PCR) further validated the increased mRNA expression levels of selected genes, consistent with DEG analysis results. However, 2.3 to 97- fold higher expression activities were induced by different doses of radiation based on qRT-PCR results. Results on the transcriptome of Tradescantia in response to radiation might provide unique identifiers to develop in situ monitoring kit for measuring radiation exposure around radiation facilities.

Gene expression profile of the early embryonic gene of the silkworm, Bombyx mori (누에 수정란 초기발현유전자 데이터베이스 구축)

  • Choi, Kwang-Ho;Goo, Tae-Won;Kim, Seong-Ryul;Kim, Sung-Wan;Chun, Jae-Buhm;Park, Seoung-Won;Kang, Seok-Woo
    • Journal of Sericultural and Entomological Science
    • /
    • v.51 no.2
    • /
    • pp.191-196
    • /
    • 2013
  • This study was aimed for development of a useful genes that has a transcript expressional specificity in the early embryonic stage of the silkworm, Bombyx mori. We constructed and analyzed a full-length cDNA library from silkworm's eggs which after a lapse of 2 ~ 6 hours post oviposit. A total 960 clones were randomly selected, and the 5' ends of the inserts were sequenced to generate 652 expressed sequence tags(EST). 334 unique ESTs were generated after the assembly of 652 ESTs. The annotation of 334 unique ESTs by BLAST search revealed that 156(47%) of the sequences represented known genes, whereas 178(53%) of the sequences has no matches in the database. Of the 156 known genes, the most abundant genes were heat shock protein hsp20.8 gene(12 times) and ubiqutin-like protein gene(11 times). The functional groups of these ESTs with matches in the database were constructed according to their putative molecular functions. Among thirteen functional categories, the largest groups were protein synthesis(9.6%) and cellular organization( 8.1%). Further defined studies on molecular functions and biological roles of their promoters will give us wellfined information and its application.

The Role of Heat Shock Protein 25 in Radiation Resistance

  • Lee Yoon-Jin;Lee Su-Jae;Bae Sangwoo;Lee Yun-Sil
    • Environmental Mutagens and Carcinogens
    • /
    • v.25 no.2
    • /
    • pp.51-59
    • /
    • 2005
  • Overexpression of HSP25 delayed cell growth, increased the level of $p21^{waf}$, reduced the levels of cyclin D1, cylcin A and cdc2, and induced radioresistance in L929 cells. We demonstrated that extracellular regulated kinase (ERK) and MAP kinase/ERK kinase (MEK) expressions as well as their activation (phospho-forms) were inhibited by hsp25 overexpression. To confirm the relationship between ERK1/2 and hsp25-mediated radioresistance, ERK1 or ERK2 cDNA was transiently transfected into the hsp25 overexpressed cells and their radioresistance was examined. HSP25-mediated radioresistance was abolished by overexpression of ERK2, but not by overexpression of ERK1. Alteration of cell cycle distribution and cell cycle related protein expressions (cyclin D, cyclin A and cdc2) by hsp25 overexpression were also recovered by ERK2 cDNA transfection. Increase in Bc1-2 protein by hsp25 gene transfection was also reduced by subsequent ERK2 cDNA-transfection. In addition, HSP25 overexpression reduced reactive oxygen species (ROS) and increased expression of manganese superoxide dismutase (MnSOD) gene. Increased activation of NF-kB (IkB degradation) was also found in hsp25-overexpressed cells. Moreover, transfection of hsp25 antisense gene abrogated all the HSP25-mediated phenomena. To further elucidate the exact relationship between MnSOD induction and NF-kB activation, dominant negative $I-kB\alpha(I-kB\alpha-DN)$ construction was transfected to HSP25 overexpressed cells. $I-kB\alpha-DN$ inhibited HSP25 mediated MnSOD gene expression. In addition, HSP25 mediated radioresistance was blocked by $I-kB\alpha-DN$ transfection. Blockage of MnSOD with antisense oligonucleotides in HSP25 overexpressed cells, prevented apoptosis and returned the ERK1/2 activation to the control level. From the above results, we suggest for the first time that reduced oxidative damage by HSP25 was due to MnSOD-mediated down regulation of ERK1/2.

  • PDF

Effects of Cadmium on the Gene Expression Profile in the Rat Basal Ganglia (카드뮴이 흰쥐 뇌기저핵의 유전자 발현에 미치는 영향)

  • Lee, Chae-Kwan
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.20 no.1
    • /
    • pp.29-40
    • /
    • 2010
  • This study was aimed at investigating the gene expression profile in basal ganglia of cadmium exposed rat based on cDNA array analysis. For cDNA array analysis, adult Sprague-Dawley male rats (350 ${\pm}$ 25 g) were intraperitoneally injected with 2.0 mg/kg body weight/day of CdCl2 (0.3 ml) for 5 days. For doserelated gene expression analysis rats were intraperitoneally injected with 0.0, 0.1, 0.3, 1.0 mg/kg body weight/day of CdCl$_2$ for 5 days. Control rats were injected with equal volume of saline. Cadmium concentration of brain was analyzed by atomic absorption spectrophotometer. For cDNA array, RNA samples were extracted from basal ganglia and reverse-transcribed in the presence of [${\alpha}$32P]-dATP. Membrane sets of the Atlas Rat 1.2 array II and Toxicology array 1.2 (Clontech, Palo Alto, CA) were hybridized with cDNA probe sets. RT-PCR was employed to validate the relative gene expression patterns obtained from the cDNA array. Northern blot hybridization methods were employed to assess the dose-related gene expression. Among the 2352 cDNAs, 671 genes were detected in both array sets and 63 genes of 38 classes showed significant (more than two fold) changes in expression. Thirty five of these genes were up-regulated and twenty eight were down-regulated in the cadmium exposed group. According to the dose-related gene expression analysis, heat shock 27 kDa protein (HSP27), neurodegeneration-associated protein 1 (Neurodap 1) genes were significantly up-regulated and melatonin receptor 1a (Mel1a), Kinesin family member 3C (KIF3C), novel kinesinrelated protein (KIF1D) genes were significantly downregulated even in the low-dose of cadmium exposed group (0.1 mg/kg body weight/day). Conclusions Sixty three genes detected in this study can give some more useful informations about the cadmium-induced neurotoxicity in the basal ganglia. As well as, HSP27, Neurodap1, Mel1a, KIF3C and KIF1D genes may be useful for the study of the cadmium-induced neurotoxicity because these genes showed dramatic changes of mRNA levels in response to the low dose of cadmium exposure.