Expression of HSP90, HSP70 mRNA and Change of Plasma Cortisol and Glucose During Water Temperature Rising in Freshwater Adapted Black Porgy, Acanthopagrus schlegeli

담수 사육 감성돔, Acanthopagrus schlegeli의 수온 상승에 따른 HSP90, HSP70 mRNA의 발현 및 혈장 cortisol과 glucose 변화

  • Choi, Cheol-Young (Division of Marine Environment & Bioscience, Korea Maritime University) ;
  • Min, Byung-Hwa (Department of Aquaculture, Pukyong National University) ;
  • Kim, Na-Na (Division of Marine Environment & Bioscience, Korea Maritime University) ;
  • Cho, Sung-Hwoan (Division of Marine Environment & Bioscience, Korea Maritime University) ;
  • Chang, Young-Jin (Department of Aquaculture, Pukyong National University)
  • 최철영 (한국해양대학교 해양환경.생명과학부) ;
  • 민병화 (부경대학교 수산과학대학 양식학과) ;
  • 김나나 (한국해양대학교 해양환경.생명과학부) ;
  • 조성환 (한국해양대학교 해양환경.생명과학부) ;
  • 장영진 (부경대학교 수산과학대학 양식학과)
  • Published : 2006.11.25

Abstract

The objective of the present study was to investigate the expression of heat shock protein 90 (HSP90) and 70 (HSP70) mRNA as cellular stress responses, the levels of plasma cortisol with glucose as neuro-endocrine stress responses during water temperature rising in freshwater adapted black porgy, Acanthopagrus schlegeli. A cDNA fragment of 891 (HSP90) and 465 (HSP70) bp was cloned from black porgy testis by Reverse transcription-polymerase chain reaction (RT-PCR) with primers designed from the conserved regions of other teleost. The PCR product of HSP90 showed very high homology to red seabream (99%), rainbow trout (95%), Atlantic salmon (94%), zebrafish (94%) HSP90, HSP70 of black porgy was also highly similar to those of rainbow trout (96%), silver seabream (95%), zebrafish (95%) HSP70. Water temperature rising ($20{\sim}30^{\circ}C$) induced elevation of HSP90 mRNA in black porgy gonad, liver, brain, intestine and kidney, whereas it resulted in an induction of the HSP70 mRNA expression in gonad only. Plasma cortisol levels increased significantly at $30^{\circ}C$ in the fish compared to those at $20^{\circ}C$. Glucose levels of the fish showed a tendency of co-increase with cortisol during water temperature rising. These results suggest that increased HSP90 mRNA in liver with plasma cortisol following heat shock may be related to increasing glucose for homeostasis in this species.

본 연구에서는 담수사육 감성돔을 대상으로 수온을 상승시켰을 때, 세포적 스트레스 측면에서 HSP90 및 HSP70 mRNA의 발현 정도를, 신경-내분비적 스트레스 측면에서 혈장 cortisol 및 glucose 농도를 조사하였다. RT-PCR법을 이용하여 생식소로부터 HSP90 (891 bp) 및 HSP70 (465 bp) cDNA 단편을 클로닝 하여, 타 종과 그 상동성을 비교해 본 결과, 감성돔 HSP90은 참돔 HSP90과 99%, 무지개송어 HSP90과 95%, 대서양 연어HSP90과 94%, zebrafish HSP90과 94%로 나타났으며, 감성돔 HSP70은 무지개송어 HSP70과 96%, silver seabream HSP70과 95%, zebrafish HSP70과 95%의 상동성을 나타내었다. 감성돔의 사육수온을 $30\;^{\circ}C$로 상승시켰을 때, HSP90 mRNA는 모든 조직에서 그 발현 정도가 $20\;^{\circ}C$ 실험구에 비하여 $7{\sim}9$배 정도 높았으나, HSP70 mRNA는 생식소에서만 발현하는 것으로 나타났다. 혈장 cortisol 및 glucose 농도는 $20\;^{\circ}C$ 실험구에 비하여 $30\;^{\circ}C$ 실험구에서 유의하게 증가한 것으로 나타났다.

Keywords

References

  1. Ackerman, P. A. and G. K. Iwama, 2001. Physiological and cellular stress responses of juvenile rainbow trout to Vibriosis. J. Aquat. Anim. Health, 13, 173-180 https://doi.org/10.1577/1548-8667(2001)013<0173:PACSRO>2.0.CO;2
  2. Ackerman, P. A., R. B. Forsyth, C. F. Mazur and G. K. Iwama, 2000. Stress hormones and the cellular stress response in salmonids. Fish Physiol. Biochem., 23, 327-336 https://doi.org/10.1023/A:1011107610971
  3. Adcock, I. M., 2000. Molecular mechanisms of glucocorticosteroid actions. Pulm. Pharmacol. Ther., 13, 115-126 https://doi.org/10.1006/pupt.2000.0243
  4. Allen, R. L., D. A. O'Brien, and E. M. Eddy, 1988. A novel hsp70-like protein (P70) is present in mouse spermatogenic cells. Mol. Cell. Biol., 8, 828-832 https://doi.org/10.1128/MCB.8.2.828
  5. Arai, A., K. Naruse, H. Mitani, and A. Shima, 1995. Cloning and characterization of cDNAs for 70-kDa heat-shock proteins (Hsp70) from two fish species of the genus Oryzias. Jpn. J. Genet., 70, 423-433 https://doi.org/10.1266/jjg.70.423
  6. Basu, N, A. E. Todgham, P. A. Ackerman, M. R. Bibeau, K. Nakano, P. M. Schulte and K. Iwama, 2002. Heat shock protein genes and their functional significance in fish. Gene, 295, 173-183 https://doi.org/10.1016/S0378-1119(02)00687-X
  7. Beckmann, R. P., L. E. Mizzen and W. J. Welch, 1990. Interaction of HSP70 with newly synthesized proteins: implications for protein folding and assembly. Science 248, 850-854 https://doi.org/10.1126/science.2188360
  8. Carmichael, G. J., Tomasso, J. R., Simco, B. A., Davis, K. B., 1984. Characterization and alleviation of stress associated with hauling largemouth bass. Trans. Am. Fish. Soc., 113, 778-785 https://doi.org/10.1577/1548-8659(1984)113<778:CAAOSA>2.0.CO;2
  9. Chang, Y. J. and J. W. Hur, 1999. Physiological responses of grey mullet (Mugil cephalus) and Nile tilapia (Oreochromis niloticus) by rapid changes in salinity of rearing water. J. Korean Fish. Soc., 32, 310-316
  10. Chang, Y. J., B. H. Min, H. J. Chang and J. W. Hur, 2002. Comparison of blood physiology in black porgy (Acanthopagrus schlegeli) cultured in converted freshwater from seawater and seawater from freshwater. J. Korean Fish. Soc., 35, 595-600 https://doi.org/10.5657/kfas.2002.35.6.595
  11. Ciavarra, R., and A. Simeone, 1990. T lymphocyte stress response. Cell. Immunol., 129, 363-367 https://doi.org/10.1016/0008-8749(90)90212-A
  12. Csermely, P., T. Schnaider, C. Soti, Z. Prohaszka and G. Nardai, 1998. The 90-kDa molecular chaperone family: Structure, function, and clinical applications. A comprehensive review. Pharmacol. Ther., 79, 129-168 https://doi.org/10.1016/S0163-7258(98)00013-8
  13. Davis, K. B., 2004. Temperature affects physiological stress responses to acute confinement in sunshine bass (Morone chrysops $\times$ Morone saxatilis). Comp. Biochem. Physiol. A , 139, 433-440 https://doi.org/10.1016/j.cbpb.2004.09.012
  14. Deane, E. E. and N. Y. S. Woo, 2005. Cloning and characterization of the hsp70 multigene family from silver sea bream: Modulated gene expression between warm and cold temperature acclimation. Biochem. Biophys. Res. Commun., 330, 776-783 https://doi.org/10.1016/j.bbrc.2005.03.039
  15. Dix D. J., J. W. Allen, B. W. Collins, C. Mori, N. Nakamura, P. Poorman-Allen, E. H. Goulding and E. M. Eddy, 1996. Targeted gene disruption of Hsp70-2 results in failed meiosis, germ cell apoptosis, and male infertility. Proc. Natl. Acad. Sci. USA., 93, 3264-3268
  16. Eddy, F. B., 1981. Effects of stress on osmotic and ionic regulation in fish. In Stress and Fish (ed. A.D. Pickering), pp. 77.102. London: Academic Press
  17. Feder, M. E. and G. E. Hofmann, 1999. Heat-shock proteins, molecular chaperones, and the stress response: evolutionary and ecological physiology. Annu. Rev. Phys., 61, 243-282 https://doi.org/10.1146/annurev.physiol.61.1.243
  18. Forsyth, R. B., E. P. M. Candido, S. L. Babich and G. K. Iwama, 1997. Stress protein expression in coho salmon with bacterial kidney disease. J. Aquat. Anim. Health, 9, 18-25 https://doi.org/10.1577/1548-8667(1997)009<0018:SPEICS>2.3.CO;2
  19. Gamperl, A. K., M. M. Vijayan and R. G. Boutilier, 1994. Experimental control of stress hormone levels in fishes: techniques and applications. Rev. Fish Biol. Fish., 4, 215-255 https://doi.org/10.1007/BF00044129
  20. Graser, R. T., D. Malnar-Dragojevic and V. Vincek, 1996. Cloning and characterization of a 70 kd heat shock cognate (hsc70) gene from the zebrafish (Danio rerio). Genetica., 98, 273-276 https://doi.org/10.1007/BF00057591
  21. Hightower, L. E., 1991. Heat shock, stress proteins, chaperones and proteotoxicity. Cell., 66, 191-197 https://doi.org/10.1016/0092-8674(91)90611-2
  22. Holloway, A. C. and J. F. Leatherland, 1997. Effect of gonadal steroid hormones on plasma growth hormone concentrations in sexually immature rainbow trout, Oncorhynchus mykiss. Gen. Comp. Endocrinol., 105, 246-254 https://doi.org/10.1006/gcen.1996.6826
  23. Huang, H. C., W. C. Lee, J. H. Lin, H. W. Huang, S. C Jian, S. J. T. Mao, P. C. Yang, T. Y. Huang and Y. C. Liu, 1999. Molecular cloning and characterization of porcine cDNA encoding a 90-kDa heat shock protein and its expression following hyperthermia. Gene, 226, 307-315 https://doi.org/10.1016/S0378-1119(98)00569-1
  24. Hutchison, K. A., K. D. Ditmar, M. J. Czar and W. B. Pratt, 1994. Proof that hsp70 is required for assembly of the glucocorticoid receptor into a heterocomplex with hsp90. J. Bio. Chem., 269, 5043-5049
  25. Iwama, G. K., P. T. Thomas, R. B. Forsyth and M. M. Vijayan, 1998. Heat shock protein expression in fish. Rev. Fish Biol. Fisher., 8, 35.56 https://doi.org/10.1023/A:1008812500650
  26. Iwama, G. K., M. M. Vijayan, R. B. Forsyth and P. A. Ackerman, 1999. Heat shock proteins and physiological stress in fish. Am. Zool., 39, 901-909 https://doi.org/10.1093/icb/39.6.901
  27. Janz, D. M., M. E. McMaster, K. R. Munkittrick and G. Van Der Kraak, 1997. Elevated ovarian follicular apoptosis and heat shock protein-70 expression in white sucker exposed to bleached kraft pulp mill effluent. Toxicol. Appl. Pharmacol., 147, 391-398 https://doi.org/10.1006/taap.1997.8283
  28. Janz, D. M., M. E. McMaster, L. P. Weber, K. R. Munkittrick and G. Van Der Kraak, 2001. Recovery of ovary size, follicle cell apoptosis and HSP70 expression in fish exposed to bleached pulp mill effluent. Can. J. Fish. Aquat. Sci., 58, 620-625 https://doi.org/10.1139/cjfas-58-3-620
  29. Khanna, A., R. F. Aten and H. R. Behrman, 1995. Physiological and pharmacological inhibitors of luteinizing hormone-dependent steroidogenesis induce heat shock protein-70 in rat luteal cells. Endocrinol., 136, 1775-1781 https://doi.org/10.1210/en.136.4.1775
  30. Kothary, R. K., E. A. Burgess and E. P. M. Candido, 1984. The heat-shock phenomenon in cultured cells of rainbow trout: hsp70 mRNA synthesis and turnover. Biochim. Biophys. Acta, 783, 137-143 https://doi.org/10.1016/0167-4781(84)90005-8
  31. Logue, J., P. Tiku and A. R. Cossins, 1995. Heat injury and resistance adaptation in fish. J. Ther. Biol., 20, 191-197 https://doi.org/10.1016/0306-4565(94)00056-O
  32. Lai, B.T., N.W. Chin, A.E., Stranek, W. Keh and K.W. Lanks, 1984. Quantitation and intracellular localization of the 85K heat shock protein by using monoclonal and polyclonal antibodies. Mol. Cell. Biol., 4, 2802-2810 https://doi.org/10.1128/MCB.4.12.2802
  33. Lele, Z., S. Engel and P. H. Krone, 1997. Hsp47 and hsp70 gene expression is differentially regulated in a stress- and tissue-specific manner in zebra-fish embryos. Dev. Genet., 21, 123-133 https://doi.org/10.1002/(SICI)1520-6408(1997)21:2<123::AID-DVG2>3.0.CO;2-9
  34. Lim, E. H. and S. Brenner, 1999. Short-range linkage relationships, genomic organization and sequence comparisons of a cluster of five hsp70 genes in Fugu rubripes. Cell. Mol. Life Sci., 55, 668-678 https://doi.org/10.1007/s000180050323
  35. Mallouk, Y., M. Vayssier-Taussat, J. V. Bonventre and B. S. Poll, 1999. Heat shock protein 70 and ATP as partner in cell homeostasis. Int. J. Mol. Med., 4, 463-474
  36. Matsumoto, M. and H. Fujimoto, 1990. Cloning of a hsp70-related gene expressed in mouse spermatids. Biochem. Biophys. Res. Commun., 166, 43-49 https://doi.org/10.1016/0006-291X(90)91909-C
  37. McDonald, D. G. and C. L. Milligan, 1997. Ionic, osmotic and acid base regulation in stress. In Fish stress and Health in Aquaculture (eds. Iwama, G.W., Pickering, A.D., Sumpter, J.P., Schreck, C.B.), pp. 119.144. Cambridge: University Press
  38. Min B. H., B. K. Kim, J. W. Hur, I. C. Bang, S. K. Byun, C. Y. Choi and Y. J. Chang, 2003 Physiological responses during freshwater acclimation of seawater-cultured black porgy (Acanthopagrus schlegeli). Korean J. Ichthyol., 15, 224-231
  39. Min, B. H., M. H. Joeng, G. A. Noh, H. K. Lim, C. Y. Choi and Y. J. Chang, 2006. Hyposmotic treatment for control of the parasitic copepod, Alella macrotrachelus on the gill of cultured black porgy. J. Aquaculture, 19, 19-24
  40. Molina, A., F. Biemar, F. Muller, A. Iyengar, P. Prunet, N. Maclean, J.A. Martial and M. Muller, 2000. Cloning and expression analysis of an inducible HSP70 gene from tilapia fish. FEBS Lett., 474, 5-10 https://doi.org/10.1016/S0014-5793(00)01538-6
  41. Mosser, D. D., A. W. Caron, L. Bourget, C. Denis-Larose and B. Massie, 1997. Role ofthe human heat shock protein hsp70 in protection against stress-induced apoptosis. Mol. Cell Biol., 17, 5317-5327 https://doi.org/10.1128/MCB.17.9.5317
  42. Munck, A., P. M. Guyre and J. Holbrook, 1984. Physiological functions of glucocorticoid in stress and their relationship to pharmacological action. Endocrine. Rev., 5, 25-34 https://doi.org/10.1210/edrv-5-1-25
  43. Murtha, J.M. and E.T. Keller, 2003. Characterization of the heat shock response in mature zebrafish (Danio rerio). Exp. Ger., 38, 683-691 https://doi.org/10.1016/S0531-5565(03)00067-6
  44. Ojima, N., M. Yamashita and S. Watabe, 2005. Quantitative mRNA expression profiling of heat-shock protein families in rainbow trout cells. Biochem. Biophys. Res. Commun., 329, 51-57 https://doi.org/10.1016/j.bbrc.2005.01.097
  45. Palmisano, A. N., J. R. Winton and W. W. Dickhoff, 2000. Tissuespecific induction of hsp90 mRNA and plasma cortisol response in chinook salmon following heat shock, seawater challenge, and handling challenge. Mar. Biotechnol., 2, 329.-338
  46. Perry, S. F. and S. D. Reid, 1993. $\beta$-adrenergic signal transduction in fish: interactive effects of catecholamines and cortisol. Fish. Physiol. Biochem., 11, 195-203 https://doi.org/10.1007/BF00004567
  47. Pratt, W. B., 1997. The role of the hsp90-based chaperone system in signal transduction by nuclear receptors and receptors signaling via MAP kinase. Ann. Rev. Pharmacol. Toxicol., 37, 297-326 https://doi.org/10.1146/annurev.pharmtox.37.1.297
  48. Pratt, W. B. and D. O. Toft, 1997. Steroid receptor interactions with heat shock protein and immunophilin chaperones. Endocr. Rev., 18, 306-360 https://doi.org/10.1210/er.18.3.306
  49. Pratt, W. B., U. Gehring and D. O. Toft, 1996. Molecular chaperoning of steroid hormone receptors. In: Stress-Inducible Cellular Responses, U. Feige, R.I. Morimoto, I. Yahara, and B. Polla. Basel, Switzerland: Birkhauser Verlag, 79-95
  50. Roux, T., A. Saker, C. Leroy, C. Frantz and H. Michel, 1994. Low temperature nitriding mechanisms of austenitic stainless steels in N2, Nice-Acropolis, France, 291-299
  51. Sanders, B. M., 1993. Stress proteins in aquatic organisms: an environmental perspective. Crit. Rev. Toxicol., 23, 49-75 https://doi.org/10.3109/10408449309104074
  52. Sathiyaa, R., T. Campbell and M. M. Vijayan, 2001. Cortisol modulates hsp90 mRNA expression in primary cultures of trout hepatocytes. Comp. Biochem. Physiol. B Biochem. Mol. Biol., 129, 679-685 https://doi.org/10.1016/S1096-4959(01)00373-6
  53. Schlesinger, M. J., M. Ashburner and A. Tissieres, 1992. Heat shock from bacteria to man. Cold Spring Harbor, New York, 131-137
  54. Stegeman, J. J., M. Brousuer, R. T. DiGuilio, L. Forlin, B. A. Fowler, B. M. Sanders and P.A. VanVeld, 1992. Molecular responses to environmental contamination: enzyme and protein system as indicators of chemical exposure and effect. In: Huggett, R. J., R. A. Kimerle, P. M. Mehrle and H. L. Bergman. Biomarkers-biochemical, physiological and histological markers of anthropogenetic stress. Boca Raton, FL: Lewis, 235-335
  55. Tomasso, J. R., Davis, K. B., Parker, N. C., 1980. Plasma corticosteroid and electrolyte dynamics of hybrid striped bass (white bass $\times$ striped bass) during netting and hauling stress. Proc. World Maricult. Soc., 11, 303-310
  56. Vamvakopoulos, N. O., K. Fukuhar, V. Patchev and G. P. Chrousos, 1993. Effect of single and repeated immobilization stress on the heat shock protein 70/90 system of the rat: glucocorticoid- independent, reversible reduction of hsp90 in the liver and spleen. Neuroendocrinol., 47, 1057-1065
  57. Wedemeyer, G. A. and D. J. McLeay, 1981. Methods for determining the tolerance of fishes to environmental stressor. In: Pickering, A.D. (ed), Stress and Fish. Academic Press, London, pp. 247-275
  58. Wegele, H., S. K. Wandinger, A. B. Schmid., J. Reinstein and J. B. Substrate, 2005. Transfer from the Chaperone Hsp70 to Hsp90. J. Mol. Biol., 356, 802-811 https://doi.org/10.1016/j.jmb.2005.12.008
  59. Wendelaar Bonga, S. E., 1997. The stress response in fish. Physiol. Rev., 77, 591-625 https://doi.org/10.1152/physrev.1997.77.3.591