• 제목/요약/키워드: Heat-resistance steel

검색결과 488건 처리시간 0.026초

CO2 레이저 표면경화처리된 중탄소 저합금강의 내마모 특성에 미치는 레이저 표면경화 인자의 영향 (Effect of Laser Surface Hardening Factors on the Wear Resistance of Medium Carbon Low Alloy Steel Surface-hardened by Using CO2 Laser Technique)

  • 박근웅;노용식;한유희;이상윤
    • 열처리공학회지
    • /
    • 제5권2호
    • /
    • pp.122-132
    • /
    • 1992
  • This study has been performed to investigate into some effects of the power density and traverse speed of laser beam on the optical microstructure, hardness and wear characteristics of medium carbon low alloy steel treated by laser surface hardening technique. The results obtained from the experiment are summarized as follows : (1) Optical micrograph has shown that finer lath martensite is formed and the amount of undissolved complex carbides increases as the traverse speed increases under the condition of a given power density, whereas the coarsening of lath martensite and the reduction of undissolved complex carbides occur with increasing the power density at a given traverse speed. (2) Hardness measurements have revealed that as the traverse speed increases, hardness values of outermost surface layer more of less decrease under low power densities, but are uniformly distributed under high power densities, also showing that they are uniformly distributed at low traverse speeds and more or less decrease at high traverse speeds with increasing the power density. (3) The effective case depth has been found to decrease from 0.26 mm to 0.17 mm with increasing the traverse speed from 1.5 m/min to 3.0 m/min at a given power density of $25.48{\times}10^3w/cm^2$ and to increase from 0.20 mm to 0.36 mm with increasing the power density from $19.11{\times}10^3w/cm^2$ to $38.22{\times}10^3w/cm^2$ at a given traverse speed of 2.0 m/min. (4) Wear test has exhibited that the amount of weight loss of laser surface hardened specimen with respect to sliding distance at a given load increases with increasing traverse speed at a given power density and decreses with increasing power density at a given traverse speed.

  • PDF

고온 가스 질화와 저온 가스 질화 방법에 따른 AISI 410 마르텐사이트 스테인레스강의 경화층 및 마모 특성 (Surface Hardening and Wear Properties of AISI 410 Martensitic Stainless Steel by High & Low Temperature Gaseous Nitriding)

  • 손석원;이원범
    • 한국표면공학회지
    • /
    • 제51권4호
    • /
    • pp.249-255
    • /
    • 2018
  • High temperature and low temperature gaseous nitriding was performed in order to study of the surface hardening and wear properties of the nitrided AISI 410 Martensitic stainless steels. High temperature gaseous nitiridng (HTGN) was carried out using partial pressure $N_2$ gas at $1,100^{\circ}C$ for 10 hour, and Low temperature gaseous nitiridng (LTGN) was conducted in a gas mixture of NH3 and N2 at $470^{\circ}C$ for 10 hour. The nitrided samples were characterized by microhardness measurements, optical microscopy and scanning electron microscopy. The phases were identified by X-ray diffraction and nitrogen concentration was analyzed by GD-OES. The HTGN specimen had a surface hardness of about $700HV_{0.1}$, $350{\mu}m$ of case depth. A ${\sim}50{\mu}m$ thick, $1,250HV_{0.1}$ hard nitrided case formed at the surface of the AISI 410 steel by LTGN, composed nitrogen supersaturated expanded martensite and ${\varepsilon}-Fe_{24}N_{10}$ iron nitrides. Additionally, the results of the wear tests, carried out LTGN specimen was low friction coefficient and high worn mass loss of ball. The increase in wear resistance can be mainly attributed to the increase in hardness and to the lattice distortion caused by higher nitrogen concentration.

저탄소강의 질화침탄과 산화처리시 분위기 변화에 따른 조직 및 부식특성에 관한 연구 (A Study on the Corrosion Properties and Microstructure of the Nitrocarburized and Oxidized Low Carbon Steel according to the Treatment Atmospheres)

  • 신평우;이구현;남기석;박율민;조형준
    • 열처리공학회지
    • /
    • 제17권2호
    • /
    • pp.87-93
    • /
    • 2004
  • Nitrocarburizing was carried out with various $CH_4$ gas composition with 4 torr gas pressure at $570^{\circ}C$ for 3 hours and post oxidation was carried out with 100% $O_2$ gas atmosphere with 4 torr at different temperatures for various time. In the case of plasma nitrocarburizing, It is that the ratio of ${\varepsilon}-Fe_{2-3}$(N, C) and ${\gamma}^{\prime}-Fe_4$(C, N), which comprise the compound layer phase, depend on concentrations of $N_2$ gas and $CH_4$ such that when the concentration of $N_2$ and $CH_4$ increased, the ratio of ${\gamma}^{\prime}-Fe_4$(C, N) decreased, but the ratio of ${\varepsilon}-Fe_{2-3}$(N, C) increased. The thickness of compound layer consistently increased as gas concentration increased regardless of $N_2$ and $CH_4$ expect when the concentration of $CH_4$ was 3.5 volume%, it decreased insignificantly. When oxidizing for 15min in the temperature range of $460{\sim}570{^\circ}C$, the study found small amount of $Fe_3O_4$ at the temperature of $460{^\circ}C$ and also found that amounts of $Fe_2O_3$. and $Fe_3O_4$ on the surface and amount of ${\gamma}^{\prime}-Fe_4$(C, N) in the compound layer increased as the increased over $460^{\circ}C$, but the thickness of the compound layer decreased. Corrosion resistance was influenced by oxidation times and temperature.

기계적합금화된 분산형 Al-4Mg기 합금의 피로거동 (The Fatigue Behavior of Mechanically Alloyed Al-4Mg Alloys Dispersed with Oxide Particles)

  • 편정우;조준식;권숙인;조윤성
    • 열처리공학회지
    • /
    • 제6권4호
    • /
    • pp.237-242
    • /
    • 1993
  • The fatigue behaviors of mechanically alloyed Al-4Mg alloys dispersed with either $Al_2O_3$ or $MgAl_2O_4$ oxide particles were investigated. This study maily concerned with the role of coherency of dispersed particles with the matrix on the fatigue behavior of the alloys. The $MgAl_2O_4$ which has a spinel structure with the lattice parameter of exactly the twice of Al showed the habit relation with the matrix. The mechanically alloyed Al-4Mg alloys showed stable stress responses with fatigue cycles from start to failure regadless of strain amplitudes and of existence of dispersoids. The Al-4Mg alloy dispersed with $MgAl_2O_4$ showed not only the better static mechanical properties but also the better low cycle fatigue resistance than that with $Al_2O_3$, i.e., much higher plastic strain energy dissipated to failure, at low strain amplitude. However, this alloy showed inferior fatigue resistance to that dispersed with $Al_2O_3$ or that without dispersion at high strain amplitude. These results imply that $MgAl_2O_4$ may promote lowering the stacking fault energy of the alloy inherited from the coherency with the matrix so that dislocations shuttle back and forth on the same slip plane without cross slipping to other planes during fatigue at low strain amplitude resulting in long fatigue life.

  • PDF

인장전단시험을 이용한 TRIP1180강의 계면파단특성 평가 (Evaluation of Resistance Spot Weld Interfacial Fractures in Tensile-Shear Tests of TRIP 1180 Steels)

  • 박상순;최영민;남대근;김영석;유지훈;박영도
    • Journal of Welding and Joining
    • /
    • 제26권6호
    • /
    • pp.81-91
    • /
    • 2008
  • The weldability of resistance spot welding of TRIP1180 steels for automobile components investigated enhance in order to achieve understanding of weld fracture during tensile-shear strength (TSS) test. The main failure modes for spot welds of TRIP1180 steels were nugget pullout and interfacial fracture. The peak load to cause a weld interfacial failure was found to be related to fracture toughness of the weld and the weld diameter. Although interfacial fracture occurred in the spot welded samples, the load-carrying capacity of the weld was high and not significantly affected by the fracture mode. Substantial part of the weld exhibits the characteristic dimple (or elongated dimple) fractures on interfacial fractured surface also, dimple fracture areas were drawmatically increased with heat input which is propotional to the applied weld current. In spite of the high hardness values associated with the martensite microstructures due to high cooling rate. The high load-carrying ability of the weld is directly associated with the area of ductile fracture occurred in weld. Therefore, the judgment of the quality of resistance spot welds in TRIP1180 steels, the load-carrying capacity of the weld should be considered as an important factor than fracture mode.

냉간단조 생산성 향상 사례 (Case studies for productivity enhancement on cold forging)

  • 최석탁;이일환;권용철;이정환;이영선
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2007년도 춘계학술대회 논문집
    • /
    • pp.42-47
    • /
    • 2007
  • The characteristics of the tool system give many effects into the costs and qualities for the finished components. Therefore, a tool life is one of the important issues on cold forging industry. However, since variables related with tool life are many complicated, the studies for solution should be investigated by the systematic research approach. The shape and process changes of die, the hardness changes of material and the tolerance of dies to decrease the die stress are analyzed by the FEM software. The heat-treatment of tool material is investigated to improve the tool life. Deep cryogenic treatment of tool steel is very efficient to improve the wear resistance due to the fine carbide. And, it is investigated that the shape and dimension of tool give effect into both tool life and quality of forged product..

  • PDF

외부 공기속도 변화에 따른 소결마찰재와 디스크간 마찰특성 (Influence of External Air Velocity for Tribological Characteristics between Sintered Friction Material and Disk)

  • 김영규;김상호;권석진;정수영;이희성
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2011년도 정기총회 및 추계학술대회 논문집
    • /
    • pp.975-985
    • /
    • 2011
  • Cu-Matrix sintered brake pads and low alloyed heat resistance steel are most applied to basic brake system for high energy moving machine. In this research, we analyzed tribological characteristics for influence of air velocity between disk and pad. At low brake pressure with air flow, friction stability was decreased due to no formation of tribofilm at disk surface. But there are no significant change of friction coefficient at all test conditions. Wear rate of friction materials were decreased with increasing of air flow velocity. In result, air flow velocity influenced friction stability, wear rate of friction materials and disk but not friction coefficient.

  • PDF

고강도 용융아연 도금강판의 파우더링 특성에 미치는 실리콘 및 합금화 열처리의 영향 (Effect of Silicon in Steels and Galvannealing Heat Cycles on Powdering Behavior of High Strength Galvannealed Steels)

  • 이호종;오용택;김종상
    • 한국표면공학회지
    • /
    • 제33권2호
    • /
    • pp.135-144
    • /
    • 2000
  • Hot-dip galvannealed sheet (GA) with high strength of $45kg/mm^2$ in tensile strength, has developed for automotive applications. However, for a successful application, the powdering behaviour of GA must be minimized. The powdering of galvannealed coatings was reduced as the silicon content in the steel increased. Rapid heating and rapid cooling rate during the galvannealing process improved the powdering resistance due to the suppression of not only the ξ phase, but also the $ \Gamma _1$, phase. An analysis of the Fe-Zn alloy phases and its relation to the powdering behaviour are discussed with SEM micrographs.

  • PDF

Integrated Expansion Analysis of Pipe-In-Pipe Systems

  • 최한석
    • 한국해양공학회지
    • /
    • 제20권5호
    • /
    • pp.9-14
    • /
    • 2006
  • This paper presents an analytical method, application of expansion, mechanical design, and integrated expansion design of subsea insulated pipe-in-pipe (PIP) systems. PIP system consists of a flowline and a casing pipe for the transport of high temperature and high pressure product from the subsea wells. To prevent heat lass from the fiowline, insulation material is applied between the pipes. The fiawline pipe and the casing pipe have mechanical connections through steel ring plate (water stops) and bulkheads. Pipeline expansion is defined by temperature, internal pressure, soil resistance, and interaction force between the flowline and the casing pipe. The results of the expansion analysis, the mechanical design of connection system of the two pipes and tie-in spool design are integrated for the whole PIP system.

$ZrSiO_4$가 첨가된 마찰재의 마찰 안정성 (Friction Stability of Materials with $ZrSiO_4$ Addition)

  • 이동규;박상찬
    • 한국안전학회지
    • /
    • 제14권3호
    • /
    • pp.110-119
    • /
    • 1999
  • This study was conducted to invent brake of non-steel material without using asbestos and disc pad added $ZrSiO_4$ was made. The physical properties and friction characteristics were investigated by varying methods. The physical properties were inspected of shear strength, hardness, heat expansion, specific gravity, % of gashole, thickness variation, weight variation and pH variation. The friction stability was measured by friction coefficient on variations of speed, temperature and deceleration condition. It was found that the physical properties were in general excellent. According to the friction characteristics tests, $ZrSiO_4$ had an abrasive property. As a results, the friction materials containing $ZrSiO_4$ 3~5vol% showed better resistance to fading and improved friction stability than the materials without ZrSiO$_4$.

  • PDF