• Title/Summary/Keyword: Heat-exchanger

Search Result 2,455, Processing Time 0.027 seconds

Performance Evaluation of K-based Solid Sorbents Depending on the Internal Structure of the Carbonator in the Bench-scale CO2 Capture Process (벤치급 CO2 포집공정에서 흡수반응기의 내부구조에 따른 K-계열 고체흡수제의 성능평가)

  • Kim, Jae-Young;Lim, Ho;Woo, Je Min;Jo, Sung-Ho;Moon, Jong-Ho;Lee, Seung-Yong;Lee, Hyojin;Yi, Chang-Keun;Lee, Jong-Seop;Min, Byoung-Moo;Park, Young Cheol
    • Korean Chemical Engineering Research
    • /
    • v.55 no.3
    • /
    • pp.419-425
    • /
    • 2017
  • In this study, the performance characteristics of the K-based sorbents (KEP-CO2P2, KEPCO RI, Korea) has been studied in relation with the heat exchanger structure and shape in a mixing zone of the carbonator in the bench-scale dry $CO_2$ capture process. Two types of heat exchangers (different structure and shape) were used in the carbonator as CASE 1 and CASE 2, in which the experiment has been continuously performed under the same operating conditions. During the continuous operation, working temperature of carbonator was 75 to $80^{\circ}C$, that of regenerator was 190 to $200^{\circ}C$, and $CO_2$ inlet concentration of the feed gas was 12 to 14 vol%. Especially, to compare the dynamic sorption capacity of sorbents, the differential pressure of the mixing zone in the carbonator was maintained around 400 to 500 mm $H_2O$. Also, solid samples from the carbonator and the regenerator were collected and weight variation of those samples was evaluated by TGA. The $CO_2$ removal efficiency and the dynamic sorption capacity were 64.3% and 2.40 wt%, respectively for CASE 1 while they were 81.0% and 4.66 wt%, respectively for CASE 2. Also, the dynamic sorption capacity of the sorbent in CASE 1 and CASE 2 was 2.51 wt% and 4.89 wt%, respectively, based on the weight loss of the TGA measurement results. Therefore, It was concluded that there could be a difference in the performance characteristics of the same sorbents according to the structure and type of heat exchanger inserted in the carbonator under the same operating conditions.

Design and Evaluation of Small-scale Supercritical Carbon Dioxide System with Solar Heat Source (태양열 적용을 위한 소형 초임계 이산화탄소 실험설비 설계 및 평가)

  • Choi, Hundong;So, Wonho;Lee, Jeongmin;Cho, Kyungchan;Lee, Kwon-yeong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.6
    • /
    • pp.403-410
    • /
    • 2020
  • This paper focuses on the design of a 12-kW small-scale supercritical CO2 test loop. A theoretical study, stabilization, and optimization of carbon dioxide were carried out with the application of a solar heat source based on solar thermal data in Pohang. The thermodynamic cycle of the test facility is a Rankine cycle (transcritical cycle), which contains liquid, gas, and supercritical CO2. The system is designed to achieve 6.98% efficiency at a maximum pressure of 12 MPa and a maximum temperature of 70℃. In addition, the optimum turbine inlet temperature and pressure were calculated to increase the cycle efficiency, and the application of an internal heat exchanger (IHX) was simulated. It was found that the maximum efficiency increases to 18.75%. The simulation confirmed that the efficiency of the cycle is 6.7% in May and 6.26% in June.

Performance analysis of a cooling system with refrigerant in a marine absorption refrigerator (선박용 흡수식 냉동기의 냉매적용 냉각 시스템 성능 분석)

  • Yun, Sang-Kook
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.4
    • /
    • pp.282-287
    • /
    • 2016
  • Recently in order to protect the ocean environment and to reduce energy consumption, shipbuilders have been developing highly economized ships. This research analyzed the possibility of adopting the onshore absorption refrigerator to offshore ships having a cooling system with refrigerant by using the waiste heat of the engine jacket cooling water instead of compression refrigerators. The results showed that R236fa could be a suitable medium for absorbing the heat of the absorber and condenser in an absorption refrigerator. The cooling system using R236fa achieved a high COP of 0.798, which is 15% and 5% higher than an air cooling system with a cooling tower and a water cooling system with a heat exchanger, respectively. The cooling system with R236fa achieved high efficiency with a 25% reduction in flow rate of LiBr solution and only 15.7% flow rate of cooling medium as compared to the water cooling system. The heating of sea water by the engine jacket water flowing out from the generator can prevent the crystallization of LiBr solution due to the low temperature of sea water.

An Analytical Study on the Performance Analysis of a Desalination System by Condensing Method (응축방식을 이용한 담수화 시스템의 성능예측을 위한 분석연구)

  • Kim, Chul-Ho;Kim, Won-Il;Choi, Jea-Young;Kim, Jae-Choul;Kim, Min-Sun
    • Transactions of the KSME C: Technology and Education
    • /
    • v.2 no.1
    • /
    • pp.47-55
    • /
    • 2014
  • A new concept of an Eco-friendly desalination method is introduced in this study. The main idea of the desalination method of seawater is the condensation of the vaporized seawater by solar heat energy on the surface of seashore. The wind turbine blade plays a role of heat exchanger condensing the vaporized water in the air. In this analytical study, the availability of the proposed desalination system was studied. First, an analytical condensation theory of the vaporized water in air was arranged and the parametric study was conducted to estimate the amount of freshwater produced from the system with the change of the temperature difference between the humid air and turbine blade, and the relative humidity in air, and wind speed. From the analytical calculation, 2,927(ton/year) of freshwater was produced at the vertical-type wind turbine (Diameter=4m, Height=3m) as the relative humidity is 100%, the temperature difference between the impeller blade and the humid air is $40^{\circ}C$ and the wind speed is 10m/s.

The Flow Behavior Characteristics of Methane with Phase Change at Low Heat Flux (저열유속에서 상변화를 수반하는 메탄의 유동거동특성)

  • Choi, Bu-Hong
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.20 no.1
    • /
    • pp.96-103
    • /
    • 2014
  • A liquefied natural gas(LNG) in cryogenic liquid is converted back into gaseous form for distribution to residential and industrial consumers. In this re-gasification process, LNG supplies a plenty of cold thermal energy about $83.7{\times}10^4kJ/kg$. The LNG cold thermal energy is utilized for the re-liquefaction process of cryogenic fluids such as Nitrogen, Hydrogen and Helium, and ice manufacturing process and air-conditioning system in some advanced countries. Therefore, it is also necessary to establish the recovery systems of the LNG cold thermal energy around Incheon, Pyungtaek and Tongyung LNG import terminals in our country. Methane is used as working fluid in this paper, which is the major component of LNG over 85 % by volume, in order to investigate the flow behavior characteristics of LNG with phase change at low heat flux. This paper presents the effects of pipe diameters, pipe inclinations and saturation pressures on the flow boundaries of methane flowing in a cryogenic heat exchanger tube, together with those of nitrogen, propane, R11 and R134a. The outcomes obtained from this theoretical researches are also compared with previous experimental data. It was also found that the effect of pipe inclination on the methane flow boundaries was significant.

Purification of Heat-Stable Enterotoxin of Enterotoxigenic Escherichia coli eKT-53 (장독성 대장균 eKT-53 균주의 내열성 장독소 정제)

  • Do, Dea-Hong;Kim, Kyo-Chang;Kim, Do-Young
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.21 no.1
    • /
    • pp.76-83
    • /
    • 1992
  • Enterotoxigenic E. coli is one of the major causative agents of the infantile diarrhea and traveler's diarrhea. The heat-stable enterotoxin (ST) is thought to be a virulence factor in the pathogenesis of the diarrhea and to be a maker for identification of the enterotoxigenic E. coli from non pathogenic E. coli. ST producing E. coli KM-7 strain was isolated from the swine and molecular cloning of ST gene of KM-7 strain. Transformant eKT-53 $(ST^+,\;LT^-)$ was selected by infant mouse assay (IMA). The culture supernatant of eKT-53 strain was performed purification by multipled steps. The culture supernatant (crude ST) was purified by sequentially applying batch adsorption chromatography on Amberlite XAD-2 resin, ion exchange chromatography on DEAE-Sephacel anion exchanger, gel filtration chromatography on Bio-Gel P-6 and preparative polyacrylamide slab gel electrophoresis. About 113-fold purification was achieved with a yield of about 11% of crude ST and the minimum effective dose(MED) of this purified ST was about 2.8ng in IMA. Homogeneity of purified ST was demonstrated by showing a single band in analytical SDS polyacrylamide disc gel electrophoresis.

  • PDF

Development of Remote Reld Testing Technique for Moisture Separator & Reheater Tubes in Nuclear Power Plants (원자력발전소 습분분리재열기 튜브 원격장검사 기술 개발)

  • Nam, Min-Woo;Lee, Hee-Jong;Kim, Cheol-Gi
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.28 no.4
    • /
    • pp.339-345
    • /
    • 2008
  • The heat exchanger tube in nuclear power plants is mainly fabricated from nonferromagnetic material such as a copper, titanium, and inconel alloy, but the moisture separator & reheater tube in the turbine system is fabricated from ferromagnetic material such as a carbon steel or ferrite stainless steel which has a good mechanical properties in harsh environments of high pressure and temperature. Especially, the moisture separator & reheater tubes, which use steam as a heat transfer media, typically employ a tubing with integral fins to furnish higher heat transfer rates. The ferromagnetic tube typically shows superior properties in high pressure and temperature environments than a nonferromagnetic material, but can make a trouble during the normal operation of power plants because the ferrous tube has service-induced damage forms including a steam cutting, erosion, mechanical wear, stress corrosion cracking, etc. Therefore, nondestructive examination is periodically performed to evaluate the tube integrity. Now, the remote field testing(RFT) technique is one of the solution for examination of ferromagnetic tube because the conventional eddy current technique typically can not be applied to ferromagnetic tube such as a ferrite stainless steel due to the high electrical permeability of ferrous tube. In this study, we have designed RFT probes, calibration standards, artificial flaw specimen, and probe pusher-puller necessary for field application, and have successfully carry out RFT examination of the moisture separator & reheater tube of nuclear power plants.

Effect of the Holding Temperature and Vacuum Pressure for the Open Cell Mg Alloy Foams

  • Yue, Xue-Zheng;Hur, Bo-Young
    • Korean Journal of Materials Research
    • /
    • v.22 no.6
    • /
    • pp.309-315
    • /
    • 2012
  • Metal foam has many excellent properties, such as light weight, incombustibility, good thermal insulation, sound absorption, energy absorption, and environmental friendliness. It has two types of macrostructure, a closed-cell foam with sealed pores and an open-cell foam with open pores. The open-cell foam has a complex macrostructure consisting of an interconnected network. It can be exploited as a degradable biomaterial and a heat exchanger material. In this paper, open cell Mg alloy foams have been produced by infiltrating molten Mg alloy into porous pre-forms, where granules facilitate porous material. The granules have suitable strength and excellent thermal stability. They are also inexpensive and easily move out from open-cell foamed Mg-Al alloy materials. When the melt casting process used an inert gas, the molten magnesium igniting is resolved easily. The effects of the preheating temperature of the filler particle mould, negative pressure, and granule size on the fluidity of the open cell Mg alloy foam were investigated. With the increased infiltration pressure, preheat temperature and granule sizes during casting process, the molten AZ31 alloy was high fluidity. The optimum casting temperature, preheating temperature of the filler particle mould, and negative pressure were $750^{\circ}C$, $400-500^{\circ}C$, and 5000-6000 Pa, respectively, At these conditions the AZ31 alloy had good fluidity and castability with the longest infiltration length, fewer defects, and a uniform pore structure.

An Experimental Study of The J-T Cryocooler with Mixed Refrigerant (혼합 냉매를 이용한 극저온 J-T 냉동기 관한 실험적 연구)

  • 이경수;정상권
    • Progress in Superconductivity and Cryogenics
    • /
    • v.3 no.1
    • /
    • pp.64-68
    • /
    • 2001
  • An experimental study on the Joule-Thomson cryocooler with the mixed refrigerant (MR) is described in this paper, J-T refrigeration experiment was performed with a single stage regular air-conditioning compressor The mixed refrigerant in the experiment was composed of 75% mol fraction of $N_2$. 30% moi fraction of CH$_4$. 30% moi fraction of $C_2$H$_{6}$. 10% mot fraction of $C_3$H$_{8}$ and 15% mot fraction of iso-C$_4$H$_{10}$. Oil mist in the MR stream could be eliminated completely by the glass microfiber filter. Since a single stage compressor that had been designed thor R22 is not appropriate for high Pressure ratio of the mixed refrigerant especially during the transient period. two modifications were incorporated to regular J-T refrigeration cycle. First. a Portion of the MR was by-passed at the inlet of the heat exchanger and transferred directly to 7he suction of the compressor in the modified system. Second, a buffer volume was Prepared to change the mass flow rate of refrigerant. The pressure ratio in J-T expansion device was relieved at the beginning of the operation due to the by-Pass scheme. but it gradually decreased during the transient Process as some of the MR component condensed at low temperature. The buffer volume at the suction side was used to increase the MR gas density in the system after the transient cool-down period. Form the experiment with the modified system, the refrigerator could reach the lowest temperature of -152$^{\circ}C$ without cooling load. and about -15$0^{\circ}C$ with 5 W of cooling load . . . .

  • PDF

Effects of alloying elements on the mechanical and high temperature corrosion properties of solid-solution hardening nickel-base alloy (Ni-Cr계 고용강화형 합금에서 조성에 따른 기계적 및 고온부식 특성 평가)

  • Jung, Sujin;Kim, Dong-Jin
    • Corrosion Science and Technology
    • /
    • v.13 no.5
    • /
    • pp.178-185
    • /
    • 2014
  • Alloy 617 is considered as a candidate Ni-based superalloy for the intermediate heat exchanger (IHX) of a very high-temperature gas reactor (VHTR) because of its good creep strength and corrosion resistance at high temperatures. Helium is used as a coolant in a VHTR owing to its high thermal conductivity, inertness, and low neutron absorption. However, helium inevitably includes impurities that create an imbalance in the surface reactivity at the interface of the coolant and the exposed materials. As the Alloy 617 has been exposed to high temperatures at $950^{\circ}C$ in the impure helium environment of a VHTR, the degradation of material is accelerated and mechanical properties decreased. The high-temperature strength, creep, and corrosion properties of the structural material for an IHX are highly important to maintain the integrity in a harsh environment for a 60 year period. Therefore, an alloy superior to alloy 617 should be developed. In this study, the mechanical and high-temperature corrosion properties for Ni-Cr alloys fabricated in the laboratory were evaluated as a function of the grain boundary strengthening and alloying elements. The ductility increased and decreased by increasing the amount of Mo and Cr, respectively. Surface oxide was detached during the corrosion test, when Al was not added to alloy. However the alloy with Al showed improved oxide adhesive property without significant degradation and mechanical property. Aluminum seems to act as an anti-corrosive role in the Ni-based alloy.