• Title/Summary/Keyword: Heat-Bridge

Search Result 181, Processing Time 0.027 seconds

Classification of Bridge Current and Analysis of Heat Transfer Characteristics in Polyvinyl-Chloride-Sheathed Flat Cord Under Tracking

  • Jee, Seung-Wook;Lee, Chun-Ha;Lee, Kwang-Sik
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.1
    • /
    • pp.176-182
    • /
    • 2013
  • In this study, we examine the tracking happen in a polyvinyl-chloride-sheathed flat cord (PVCSFC), which is widely used as a distribution cord. The study classifies the bridge current via the formed conductive paths during tracking in the PVCSFC. Further, it attempts to distinguish the characteristics of heat generation and heat transfer by kind of bridge current. When the PVCSFC is in the static state, the bridge currents flow only through the electrolyte bridge. In the case of the carbonized PVCSFC, the bridge currents flow through one or more conductive paths. One is the electrolyte bridge, the other is the bridge that is consisted electrolyte and carbonized insulation. Currents flowing through different conductive paths have different heat generation and transfer characteristics. As the bridge current flowing in the conductive path consisting of electrolyte and carbonized insulation increases, the temperature difference between the surface of the PVCSFC and ambient air also increases correspondingly.

A Study on Life Cycle Cost Analysis of Thermal Bridge Barrier Between Window Frame and Concrete Wall (건축물의 창틀과 벽체 사이 열교방지공법의 LCC 분석)

  • Park, Cheol-Yong;Kim, Woong-Hoi;Lee, Sang-Hee;Nam, Seung-Young;Yoon, Gil-Ho
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.05a
    • /
    • pp.59-60
    • /
    • 2019
  • Thermal bridge on a building envelope causes additional heat loss which increases the heating energy consumption. As the higher building insulation performance is required, heat loss through thermal bridge becomes higher proportion among total building heating energy consumption. For the exterior insulation and finish system, thermal bridge between window frame and concrete wall should be constidered as one of main reasons of heat loss. In this study, the thermal bridge barrier between window frame and concrete wall(STAR) was proposed as the best practice for reducing thermal bridge. The STAR was confirmed that the use of thermal bridge barrier imporved the annual heat energy capacity by 35% or more and the innitial construction cost by 7.4% or less because of additional interior insulation against condensation. Finally the life cycle cost during 20 year by heating energy of a building reduced by 25% or more compared with the exist technology. This STAR thermal bridge barrier will be used as the main technology to improve the energy efficiency of building.

  • PDF

Evaluation of Damage on a Concrete Bridge Considering the Location of the Vehicle Fire (차량 화재 위치를 고려한 콘크리트 교량의 손상 영향 평가)

  • Park, Jang Ho;Kim, Sung Soo
    • Journal of the Korean Society of Safety
    • /
    • v.28 no.3
    • /
    • pp.80-87
    • /
    • 2013
  • Heat transfer analysis and thermal stress analysis for the concrete bridge was performed in order to investigate the damage of the concrete bridge by the fire of the vehicle. Changes in material properties, such as thermal conductivity, specific heat, density, elasticity, caused by temperature rise were considered. Heat transfer analysis and thermal stress analysis were performed according to the various location of the fire by ABAQUS. From the comparison of the numerical results, the degree of structural damage for the concrete bridge was investigated and considerations for the design of a concrete bridge against fire were identified.

Numerical Modeling of Heat Analysis of Bridge Pavement (포장 열영향 해석을 위한 아스팔트 열원 평가)

  • Lee, Wan-Hoon;Yoo, Byoung-Chan;Chung, Heung-Jin
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.253-258
    • /
    • 2007
  • Guss asphalt used in pavement of a steel deck bridge may cause severe stress and displacement on the bridge as it is treated using very high temperatures ranging from $220^{\circ}C$ to $260^{\circ}C$. Therefore, it is critical to estimate the thermal effect of Guss asphalt on the steel deck bridge before the width and pattern of the unit portion are decided to minimize impact. In this study, introduce a new analysis method styled the Heat source of equivalent of the cable stayed bridge were conducted to verify the feasibility of numerical value analysis by comparing the results with the data measured. The thermal effects of Guss asphalt on the steel deck bridge according to temperature changes were also studied.

  • PDF

Integrated fire dynamic and thermomechanical modeling of a bridge under fire

  • Choi, Joonho;Haj-Ali, Rami;Kim, Hee Sun
    • Structural Engineering and Mechanics
    • /
    • v.42 no.6
    • /
    • pp.815-829
    • /
    • 2012
  • This paper proposes a nonlinear computational modeling approach for the behaviors of structural systems subjected to fire. The proposed modeling approach consists of fire dynamics analysis, nonlinear transient-heat transfer analysis for predicting thermal distributions, and thermomechanical analysis for structural behaviors. For concretes, transient heat formulations are written considering temperature dependent heat conduction and specific heat capacity and included within the thermomechanical analyses. Also, temperature dependent stress-strain behaviors including compression hardening and tension softening effects are implemented within the analyses. The proposed modeling technique for transient heat and thermomechanical analyses is first validated with experimental data of reinforced concrete (RC) beams subjected to high temperatures, and then applied to a bridge model. The bridge model is generated to simulate the fire incident occurred by a gas truck on April 29, 2007 in Oakland California, USA. From the simulation, not only temperature distributions and deformations of the bridge can be found, but critical locations and time frame where collapse occurs can be predicted. The analytical results from the simulation are qualitatively compared with the real incident and show good agreements.

A Study on Creep, Drying Shrinkage, Hydration Heat Produced in Concrete Floor Plate of Steel Box Girdler Bridge (강박스 거더교 콘크리트 바닥판에 발생하는 크리프, 건조수축, 수화열에 관한 연구)

  • 강성후;박선준;김민성
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.457-462
    • /
    • 2003
  • It studies the non-structural crack factors that are produced in Steel Box Girder Bridge concrete floor plate using analytical method. It mainly studies humidity and design standard of concrete strength. It used MIDAS CIVIL Ver 5.4.0, a general structure analysis program that applies drying shrinkage rate of domestic road bridge design standard and standard value of creep coefficient, CEF-FIP standard equation and ACI standard equation from the aspect of creep, drying shrinkage and hydration heat to see the effect of the two factors on concrete crack and found the following result. The analytical results of this study showed that the initial stress, which was obtained by ACI standard, exceeds the allowable tensile stress between 5 to 18 days. This result means that even if a bridge is designed and constructed according to design standard, the bridge can have cracks due to various variables such as drying shrinkage, hydration heat and creep that produce stress in slab.

  • PDF

Fire Damage Assessment for Steel-Concrete Composite and PSC Bridge Superstructures Using Heat Flow Analysis (열유동 해석을 이용한 강합성 및 PSC 교량 상부구조의 화재손상평가)

  • Park, Yang Heum;Yun, Sung-Hwan;Jang, Il Young
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.41 no.2
    • /
    • pp.93-100
    • /
    • 2021
  • The objective of this research is to evaluate of fire damage for steel-concrete composite bridge superstructure and PSC bridge superstructure under highway bridge exposed to fire loading. To enhance the accuracy and efficiency of the numerical analysis, the proposed heat flow fire analysis method is implemented in ANSYS. The proposed heat flow analysis method is applied to fire damage analysis and performance evaluation for Buchen and Yangsan highway bridge. The result of analysis, temperature of concrete slab and lower flange of steel-concrete composite bridge superstructure are exceed the critical temperature. Also, temperature of slab, lower and upper flange, web of PSC bridge superstructure are exceed the critical temperature. However, the major component, tendon, did not exceed the critical temperature.

A Characteristic Heating-Energy Expend of Insulation Block System for Korea Type Passive House (한국형 패시브하우스를 위한 단열블럭시스템의 난방에너지소비 특성)

  • Kang, Jae-Sik;Choi, Gyoung-Seok;Yang, Kwan-Seop;Lee, Seung-Eon
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.603-607
    • /
    • 2009
  • About a Structure is performance external insulation is fundamantal performance for enrgy-saving. these day, most of residential structures have constructed by internal insulation method structure. The method structure internal insulation have construction and economical efficiency, but on the other hand, be generated heat loss by heat bridge especially, be generated loss heat-energy logical consequence in structure ondol. The external insulation structure method has a mert able to minimum to loss heat about heat-bridge. But the external insulation technique is unsatisfactory statues within the know-how and method of construction and materials compared with developed countries. The recently, the requirement of market related to the external insulation technique is resulted by the energy efficiency system, but it can lead to the lack of alternative technique In study on the korea type passive house building design for insulation block method of wall system has to experimental characteristic heat-energy of practice building. In result field-experimental, the heat-bridge appeared to characteristic spent heat-energy of blow 2L class and have a suffience performance it.

  • PDF

Analysis and Measurements of Hydration Heat of Pile Cap of Approach Bridge in Incheon Bridge (인천대교 접속교 파일캡구조물의 수화열 해석 및 계측)

  • Park, Kyoung-Lae;Yun, Man-Guen;Shin, Hyun-Yang;Kim, Young-Seon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.693-696
    • /
    • 2006
  • In massive hardening concrete structures, early age thermal cracking due to the heat of hydration may occur. There are many massive structures in Incheon bridge project and they have to be carefully treated to prevent thermal cracking. In this paper, an example of analyzed and measured results of hydration heat of pile caps in the Incheon bridge project was represented. Finite element simulations were carried out before casting and curing method was determined using the analyzed result. Sensors were installed before casting and temperature and strain of concrete was measured during curing. Gathered data were compared with the analyzed data and selected control method to prevent cracking was verified. Analyzed result gave good agreement and very few cracking could be found.

  • PDF