• Title/Summary/Keyword: Heat transfer model

Search Result 1,848, Processing Time 0.024 seconds

Transient Heat Transfer in Porous Media under Oscillating Flow Condition (왕복유동조건에서 다공성 물질의 비정상 열전달)

  • Byeon, Su-Yeong;Lee, Dae-Yeong;No, Seung-Tak
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.3
    • /
    • pp.422-432
    • /
    • 2001
  • An analytical characterization is presented on the transient heat transfer by an oscillating flow through a porous slab. Based on a two-equation model, analytic solutions are obtained for both the fluid and solid temperature variations. Two parameters are identified as the Stanton number for the internal heat exchange and the ratio of the thermal capacities between the solid and fluid phases. The heat transfer characteristics are shown to be classified into four regimes according to the two parameters and physical interpretation is presented on the particular heat transfer processes within each regime. In addition, the condition for the local thermal equilibrium between the phases is examined and the relevant criterion is suggested.

A Simple Condensation Model on the Vapor Jets in Subcooled Water (과냉각수로 방출되는 증기제트의 응축모델)

  • Kim, Hwan-Yeol;Ha, Kwang-Soon;Bae, Yoon-Yeong;Park, Jong-Kyun;Choi, Sang-Min
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.240-245
    • /
    • 2001
  • Phenomena of direct contact condensation (DCC) heat transfer between steam and water are characterized by the transport of heat and mass through a moving steam/water interface. Application of the phenomena of DCC heat transfer to the engineering industries provides some advantageous features in the viewpoint of enhanced heat transfer. This study proposes a simple condensation model on the steam jets discharging into subcooled water from a single horizontal pipe for the prediction of the steam jet shapes. The analysis model was derived from the mass, momentum and energy equations as well as a thermal balance equation with condensing characteristics at the steam/water interface for the axi-symmetric coordinates. The extremely large heat transfer rate at the steam/water interface was reflected in the effective thermal conductivity estimated from the previous experimental results. The analysis results were compared with the experimental ones. The analysis model predicted that the steam jet shape (i. e. radius and length) was increasing as the steam mass flux and the pool temperature were increasing, which was similar in trend to that observed in the experiment.

  • PDF

Heat Transfer Characteristics of Electronic Components in a Horizontal Channel According to Various Cooling Methods (다양한 냉각방법에 따른 수평채널 내 전자부품의 열전달 특성)

  • Son, Young-Seok;Shin, Jee-Young
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.6
    • /
    • pp.854-861
    • /
    • 2008
  • Heat transfer characteristics of protruding electronic components in a horizontal channel are studied numerically. The system consists of two horizontal channels formed by two covers and one printed circuit board which has three uniform protruding heat source blocks. A two-dimensional numerical model has been developed to predict the conjugate heat transfer. and the finite volume method is used to solve the problem. Five different cooling methods are considered to examine the heat transfer characteristics of electronic components according to the different cooling methods. The velocity and temperature of cooling medium and the temperature of the heat source blocks are obtained. The results of the five different cooling methods are compared to find out the most efficient cooling method in a given geometry and heat sources.

Effects of radiation on wall-friction and heat-transfer in a convergent- divergent nozzle (복사가 수축 확대 노즐의 벽면에서 열전달과 벽마찰에 미치는 효과)

  • 강신형;이준식;김성훈
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.6
    • /
    • pp.1639-1644
    • /
    • 1990
  • Effects of radiation on the wall-friction and heat transfer in the convergent and divergent nozzle of a rocket motor are investigated in the present paper. Radiative heat transfer cools down the core gas, and the decrease in the gas temperature reduces the convective heat transfer on the wall. Radiation heat transfer is estimated by using mean-beam-length approach and core flow is assumed to be one-dimensional isentropic. The compressible thermal boundary layer is solved by a finite difference method. The Cebeci-Smith eddy viscosity model is adopted for the present study. Convective heat transfer is reduced at the throat of the nozzle and is almost compensated with an increase in radiative transfer. In the sequel total heat transfer rate is slightly reduced. However, radiation heat transfer is dominant in the converging part of the nozzle.

Numerical Analysis on Cooling Characteristics of Electronic Components Using Convection and Conduction Heat Transfer (대류와 전도 열전달을 이용한 전자부품의 냉각특성 수치해석)

  • Son, Young-Seok;Shin, Jee-Young
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.390-395
    • /
    • 2001
  • Cooling characteristics using convection and conduction heat transfer in a parallel channel with extruding heat sources are studied numerically. A two-dimensional model has been developed for numerical prediction of transient, compressible, viscous, laminar flow, and conjugate heat transfer between parallel plates with uniform block heat sources. The finite volume method is used to solve this problem. The considered assembly consists of two channels formed by two covers and one PCB which has three uniform heat source blocks. Five different cooling methods are considered to find efficient cooling method in a given geometry and heat source. The velocity and temperature fields, local temperature distribution along surface of blocks, and the maximum temperature in each block are obtained.

  • PDF

A Study on the Vortex Generators of Plastic Plate Heat Exchangers (플라스틱 판형 열교환기의 와류발생기에 관한 연구)

  • Oh Yunyoung;Yoo Seongyeon;Ko Sungho
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.107-110
    • /
    • 2002
  • The present study deals with CFD analysis of 'The vortex generators on plastic plate heat exchanger'. When a vortex generator is placed on the heat transfer surface, the flow gets more complex because it entails complicated three-dimensional flows such as separation, reattachment, and recirculation. CFX-5.4, a commercial code utilizing unstructured mesh, has been used as a computational method for solving RANS(Reynolds-Averaged Wavier-Stokes) equations, and the applied turbulence model is $k-{\varepsilon}$ model. In addition, those computational analyses were implemented under various conditions , with or without the vortex generator between two plates, the number, form and the size of vortex generator, and different attack of angle. From the calculated temperature, velocity and pressure distribution, vorticity, wall heat flux and so on under those conditions, this study shows the effect of vortex on heat transfer.

  • PDF

An effect of Radiation Heat Transfer on the Thermal Dissipation from the Electronic Chip in an Enclosure (밀폐공간에 놓인 전자 칩의 열발산에 복사 열전달이 미치는 영향)

  • Choi, In-Su
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.12 no.4
    • /
    • pp.179-186
    • /
    • 2009
  • Electronic components in an enclosure have been investigated to prevent undesired thermal problems. The electronic devices, such as ECUs of automotive engines, are operated under the contaminated environments, so that they rely on the passive cooling without any fluid-driving methods. Therefore the radiation heat dissipation plays more important role than the conduction and convection heat transfer. Hence their combined heat dissipation phenomena have been simulated by a numerical model to reveal the effects of supplied heat flux, emissivity of material, geometry of enclosure, charging gas and pressure. The result showed that the radiation had a significant effect on the heat dissipation of module in an enclosure, and some space above the module should be reserved to prevent its thermal problem. In addition, the higher thermal conductivity and pressure of gas in an enclosure could be necessary to improve the thermal dissipation from the electronic devices.

  • PDF

Turbulent Flow and Heat Transfer in an Annular Passage with Repeated-Ribbed Roughness on Both Walls (양측벽면에 반복돌출형 거칠기가 있는 이중관통로내의 난류운동과 열전달)

  • 안수환;이윤표
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.5
    • /
    • pp.26-36
    • /
    • 1996
  • The fully developed turbulent momentum and heat transfer induced by the square-ribbed roughness elements on both the inner and outer wall surfaces in concentric annuli are studied analytically based on a modified turbulence model. The analytical results of the fuid flow are verified by experiment. The experiment is done with a pitot tube and a X-type hot wire anemometer to measure the time mean velocity profiles, zero shear stress positions, maximum velocity positions and friction factors, and etc. shown in Fig.1. The resulting momentum and heat transfer are discussed in terms of various parameters, such as the radius ratio, the relative roughness, the roughness density, Reynolds number, Nusselt bumber and Prand시 number. The study demonstrates that certain artificial roughness elements may be used to enhance heat transfer rates with advantage from the overall efficiency point of view by investigating turbulent flows and heat transfer in Fig.1.

  • PDF

Convection Heat-Transfer Characteristics of Ondol-Heated Room (온돌난방공간(溫突暖房空間)의 내표면(內表面) 대류열전달특성(對流熱傳達特性)에 관(關)한 연구(硏究))

  • Sohn, J.Y.;Ahn, B.W.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.3 no.5
    • /
    • pp.376-385
    • /
    • 1991
  • The purpose of this paper is to propose basic data on convection heat-transfer coefficients in Ondol-heated room. Surface temperatures and several temperatures around each inside surface of wall, floor and ceiling composed of heating room are measured vertically in Ondol-heated model rooms, and the vertical temperature profiles could be expressed by nonlinear equation models. Also, the convection heat transfer phenomena are analysed from the nonlinear equation models. In the results, the convection heat-transfer coefficients of Ondol heated space are suggested by the term of temperature difference between each wall surface and room air temperature and by the relationship between Nusselt number and Rayleigh number of dimensionless numbers.

  • PDF

Numerical Analysis on the Heat Transfer Characteristics of Multiple Slot Jets at the Surface of Protruding Heated Blocks (충돌제트의 간격변화에 따른 발열블록 표면에서의 열전달 특성에 관한 수치해석)

  • 박시우;정인기
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.27 no.2
    • /
    • pp.229-237
    • /
    • 2003
  • The flow and heat transfer characteristics at the surface of two-dimensional protruding heated blocks using confined impingement multiple slot jets were computationally investigated Numerical predictions were made for round-edged nozzles at several nozzle-to-target plate spacings and jet-to-jet distances, with turbulent jet Reynolds numbers ranging from 2000 to 7800. The commercial finite-volume code FLUENT was used to solve the heat transfer characteristics and flow fields using a RNG $\textsc{k}-\varepsilon$ model. The computed heat transfer characteristics at the surface of heated blocks were in good qualitative agreement with previous experimental data The results of heat transfer characteristics on the surface of protruding heated blocks are important considerations in electronics Packaging design.