• Title/Summary/Keyword: Heat transfer loss

검색결과 477건 처리시간 0.021초

후퇴익형 형상의 와류발생기가 있는 핀휜 유동의 전열 및 유동 특성 분석에 관한 수치적 연구 (Numerical Study on Heat Transfer and Flow Characteristics of Pin Fin with Swept Airfoil Shape Vortex Generator)

  • 이창형;오영택;배지환;이득호;김귀순
    • 한국추진공학회지
    • /
    • 제23권4호
    • /
    • pp.28-34
    • /
    • 2019
  • 본 연구에서는 터빈 냉각에 널리 사용되는 핀-휜 배열에 대한 연구를 진행하였다. 본 연구에서 원형 튜브 전방에 익형 와류발생기가 위치하며, 익형 단면 형상은 NACA-9410을 사용하였다. 본 논문에서는 와류 발생기가 있는 핀-휜 배열 유동의 전열 성능과 유동 특성을 수직인 방향으로 변화시키며 기존의 핀-휜 유동과 비교하였다. 레이놀즈수 영역은 6000, 10000 그리고 15000 세 가지를 계산하였다. 전산 해석은 상용 프로그램인 ANSYS v18.0 CFX, 난류 모델은 $k-{\omega}$ SST를 사용하였다. 결과적으로 전열 성능은 최대 5.8% 증가하였고 압력 손실은 1% 미만으로 증가하였다.

핵연료 집합체 혼합날개형상의 수치최적설계 (Numerical Optimization of the Shape of Mixing Vane in Nuclear Fuel Assembly)

  • 서준우;김광용
    • 대한기계학회논문집B
    • /
    • 제28권8호
    • /
    • pp.929-936
    • /
    • 2004
  • In the present work, shape of the mixing vane in Plus7 fuel assembly has been optimized numerically using three-dimensional Reynolds-averaged Navier-Stokes analysis of flow and heat transfer. Standard $k-{\epsilon}$ model is used as a turbulence closure. The Response surface method is employed as an optimization technique. The objective function is defined as a combination of heat transfer rate and inverse of friction loss. Bend angle and base length of mixing vane are selected as design variables. Thermal-hydraulic performances for different shapes of mixing vane have been discussed, and optimum shape has been obtained as a function of weighting factor in the objective function.

Spiral 구조 EGR Cooler의 열유동 특성 평가 (Evaluation of Thermal Fluid Characteristics for EGR Cooler with Spiral Type)

  • 허형석;원종필;박경석
    • 한국자동차공학회논문집
    • /
    • 제11권6호
    • /
    • pp.44-50
    • /
    • 2003
  • Cooled EGR is an effective method for the reduction of NOx from a diesel engine and an EGR Cooler is the key component of the system. High efficiency, low pressure loss and compactness are required for the EGR Cooler. To meet these requirements, new geometric tube must be developed. In this paper, a full size EGR cooler test bench has been developed to validate the CFD flow and heat transfer models. Fluid temperature and pressure drop measurements are provided. fillet temperature is $200^{\circ}C$ and $300^{\circ}C$, and flow rates vary from 0.008 kg/sec to 0.019 kg/sec. The gas flow and heat transfer in a single tube cooler have been studied using computational fluid dynamics(CFD). Analysis has been carried out in a single tube with a plain tube and six spirally enhanced tubes of varying pitch to depth ratio(p/e).

Propagation of plane wave in transversely isotropic magneto-thermoelastic material with multi-dual-phase lag and two temperature

  • Lata, Parveen;Kaur, Iqbal;Singh, Kulvinder
    • Coupled systems mechanics
    • /
    • 제9권5호
    • /
    • pp.411-432
    • /
    • 2020
  • This research is devoted to the study of plane wave propagation in homogeneous transversely isotropic (HTI) magneto-thermoelastic rotating medium with combined effect of Hall current and two temperature due to multi-dual-phase lag heat transfer. It is analysed that, for 2-D assumed model, three types of coupled longitudinal waves (quasi-longitudinal, quasi-transverse and quasi-thermal) are present. The wave characteristics like phase velocity, specific loss, attenuation coefficients, energy ratios, penetration depths and amplitude ratios of transmitted and reflected waves are computed numerically and illustrated graphically and compared for different theories of thermoelasticity. Some particular cases are also derived from this research.

Optimization of a Wire-Spacer Fuel Assembly of Liquid Metal reactor

  • ;김광용
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2005년도 연구개발 발표회 논문집
    • /
    • pp.240-243
    • /
    • 2005
  • This study deals with the shape optimization of a wire spacer fuel assembly of Liquid Metal Reactors (LMRs). The Response Surface based optimization Method is used as an optimization technique with the Reynolds-averaged Navier-Stokes analysis of fluid flow and heat transfer using Shear Stress Transport (SST) turbulence model as a turbulence closure. Two design variables namely, pitch to fuel rod diameter ratio and lead length to fuel rod diameter ratio are selected. The objective function is defined as a combination of the heat transfer rate and the inverse of friction loss with a weighting factor. Three level full-factorial method is used to determine the training points. In total, nine experiments have been performed numerically and the resulting datas have been analysed for optimization study. Also, a comparison has been made between the optimized surface and the reference one in this study.

  • PDF

재생냉각 유로 내의 유동에 관한 수치해석 (Numerical Analysis of Fluid Flow in a Regenerative Cooling Passage)

  • 조원국
    • 한국추진공학회지
    • /
    • 제4권1호
    • /
    • pp.46-52
    • /
    • 2000
  • 축소형 액체로켓 엔진에 적용될 재생냉각유로에 대한 전산유동해석을 수행하고 결과로서 유로 내의 압력손실과 열전달률을 예측하였다. 유로의 단면적 축소/확대가 압력손실을 증가시키지만 이차유동을 유발하고 난류화를 촉진시켜 열전달률을 상승시키는 효과가 있는 것으로 밝혀졌다. 단면적 변화는 노즐목 부근에서 일어나는데 이는 열부하가 큰 노즐목을 보호하는데 효과적이다. 또한 유량 변화로 인한 재생냉각 장치의 정량적인 성능변화를 관찰하였다.

  • PDF

熱機關의 最適 運轉條件 (The optimal operation condition of heat engine)

  • 정평석;김수연
    • 대한기계학회논문집
    • /
    • 제11권6호
    • /
    • pp.971-974
    • /
    • 1987
  • 본 연구에서는 최적설계를 위한 기초로서, 고정된 두 열원사이에서 작동하는 열기관을 예로 들어 운전조건에 따른 출력과 효율의 변화를 정성적으로 설명하여 출력 과 효율의 최대값이 극대값으로 나타남을 보이고, 경제적 측면에서 이들의 의의 및 경 제적 최적운전조건과의 관계 등을 고찰하려 한다.

Estimation of Heat Losses From the Receivers for Solar Energy Collecting System of Korea Institute of Energy Research

  • Ryu, Siyoul;Seo, Taebeom
    • Journal of Mechanical Science and Technology
    • /
    • 제14권12호
    • /
    • pp.1403-1411
    • /
    • 2000
  • Heat losses from the receivers for a dish-type solar energy collecting system constructed at Korea Institute of Energy Research are analyzed. The Stine and McDonald's model is used to estimate the convection loss. The Net Radiation method and the Monte-Carlo method are used to calculate the radiation heat transfer rate from the inside surface of the receiver to the surroundings. Two different receivers are suggested here and the performances of the receivers are estimated and compared with each other based on the prediction of the amount of heat losses from the receivers. The effects of the receiver shape and the radiation properties of the surface on the thermal performance are investigated. The performance of Receiver I is better than that of Receiver II, and the amount of solar irradiation that is not captured by the captured by the receiver after being reflected by the concentrator becomes significant if the temperature of the working fluid is low.

  • PDF

마이크로 가스센서의 열적 성능에 관한 연구 (A Study of Thermal Performances for Micro Gas Sensor)

  • 주영철;김창교
    • 대한기계학회논문집B
    • /
    • 제30권6호
    • /
    • pp.531-537
    • /
    • 2006
  • A lever type $NO_2$ micro gas sensor was fabricated by MEMS technology. In order to heat up the gas sensing material to a target temperature, a micro heater was built on the gas sensor. The sensing material laid on the heater and electrodes and did not contact with the silicon base to minimize the heat loss to the silicon base. The electric power to heat up the gas sensor to a target temperature was measured. The temperature distribution of micro gas sensor was analyzed by a CFD program. The predicted electric power of micro heater to heat up the sensing material to the target temperature showed a good agreement with the measured data. The design of micro gas sensor could be modified to show more uniform temperature distribution and to consume less electric power by optimizing the layout of micro heater and electrodes.

마이크로 핫플레이트를 갖는 마이크로 가스센서의 열적성능에 관한 연구 (A Study on Thermal Performances of Micro Gas Sensor with Micro Hotplate)

  • 주영철;임준형;이주헌;김창교
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제55권5호
    • /
    • pp.278-285
    • /
    • 2006
  • A micro hotplate for micro gas sensor was fabricated by MEMS technology. In order to heat up the gas sensing material to a target temperature, a micro hotplate was built on the gas sensor. The sensing material was deposited on the heater and electrodes, and did not contact with the silicon base to minimize the heat loss to the silicon base. The electric power to heat up the gas sensor was measured. The temperature distribution of micro gas sensor was analyzed by a CFD program. The predicted electric power to heat up th sensing material showed a good agreement with the measured data. The design of micro gas sensor could be modified to increase the temperature uniformity and to decrease the electric power consumption by optimizing the layout of micro hotplate and electrodes.