• Title/Summary/Keyword: Heat transfer effect

Search Result 1,755, Processing Time 0.028 seconds

Heat Transfer Characteristics of Individual Rows for Fin-and-Tube Heat Exchangers (핀-관 열교환기의 열별 열전달 특성)

  • Kim, Nae-Hyun;Shin, Tae-Ryong;Han, Sung-Pil
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.19 no.2
    • /
    • pp.149-155
    • /
    • 2007
  • The row-by-row heat transfer characteristics of fin-and-tube heat exchangers were experimentally investigated. Three wavy fin samples having different rows (one, two and three) and one plain fin sample (three row) were tested for $600{\leq}Re_{D}{\leq}4,000$. The heat transfer data were obtained for individual rows, and the corresponding heat transfer coefficients were reduced from the data. Results showed that the heat transfer coefficients were strongly dependent on the tube row. The heat transfer coefficient decreased as the tube row increased. However, the row effect was different depending on the fin shape. For the wavy fin, the row effect significantly decreased as the Reynolds number increased, yielding approximately the same heat transfer coefficients at $Re_{D}{\approx}2,500$. For the plain fin, however, the row effect lasted for the whole Reynolds number range. The increased mixing of bulk flow by wavy channels appears to induce high heat transfer coefficient (accordingly diminishing row effect) at downstream rows. The heat transfer coefficients of individual rows were higher for heat exchangers having larger tube rows.

A Study on Radiation Heat Transfer of Wafer Transfer Module Using Computational Flow Visualization (전산유동가시화를 활용한 웨이퍼 이송장치의 복사열전달에 관한 연구)

  • Min Gi, Chu;Ji Hong, Chung;Dong Kee, Sohn;Han Seo, Ko
    • Journal of the Korean Society of Visualization
    • /
    • v.20 no.3
    • /
    • pp.58-66
    • /
    • 2022
  • The high heat emitted from the process module and heat jacket may cause errors in semiconductor process equipment. Barriers were designed to reduce the temperature of surface on transfer module. A designed barrier was compared and analyzed by numerical analysis using ANSYS Fluent. The average temperature of barrier and effect of radiation heat transfer were also compared through absorbed radiative heat flux of the barrier. The adoption of the barrier had an effect on the radiative heat transfer reduction of the transfer module rod. The effect of the angles of barrier from 50° to 90° on the heat transfer was investigated using the absorbed radiative heat flux with the average temperature. The angle of barrier of 50° reduced the temperature up to 9.6 %.

Heat Transfer Characteristics of Plastic Particle Slurry in a Circular tube Flow (관내 유동 플라스틱 슬러리의 열전달 특성)

  • 김명환;김명준
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.3
    • /
    • pp.451-456
    • /
    • 2004
  • This present experimental study has dealt with the heat transfer characteristics of plastic particle slurry which flows in a circular tube. This type of slurry is suggested for heat transfer enhancement effect cause by random and vortex effect of plastic particle dispersed in water. As a result, the thermal boundary layer becomes thin so the heat transfer coefficient on the tube wall more increase compare to pure water flow. This experimental test section was composed with stainless pipe which has the length of 2000mm, inner pipe diameter of 14mm and outer pipe diameter of 60mm. The most effective and important parameter of this experiment is plastic packing factor(PPF). The focuses of these results are pressure drop and heat transfer coefficient. As results, the friction factor of plastic particle slurry becomes higher at laminar flow region than pure water because of buoyancy effect of plastic particle but the local heat transfer coefficient becomes higher.

Effect of Natural Convection on the Heat Transfer in a Latent Heat Storage System (잠열축열시스템의 축열과정에서 자연대류의 영향에 관한 연구)

  • Ryu, S.N.;Han, G.Y.
    • Solar Energy
    • /
    • v.19 no.2
    • /
    • pp.29-36
    • /
    • 1999
  • Heat transfer characteristics of a low temperature latent heat storage system during the heat storage stage was examined for the circular finned tubes using fatty acid which shows the big density difference during melting as phase change materials. The heat storage vessel has the dimension of 530 mm height, 74 mm inside diameter and inner heat transfer tube is 480 mm in height and 13.5 mm outside diameter. Hot water was employed as the heat transfer fluid. During the heat storage stage, it was found that both conduction and natural convection were the major heat transfer mechanism. It was also found that the effect of natural convection on the heat transfer was more significant for the unfinned tube system than that for the finned tube system. The experimentally determined overall heat transfer coefficients were in the range of $50{\sim}250W/m^2K$ and the correlation for natural convection heat transfer as a function of Nusselt and Rayleigh number was proposed.

  • PDF

Boiling Heat Transfer Characteristics of R-290 in Horizontal Minichannel (수평미세관내 R-290의 비등열전달 특성)

  • Choi, Kwang-Il;Pamitran, A.S.;Oh, Jong-Taek
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.68-73
    • /
    • 2006
  • The present paper deals with an experimental study of boiling heat transfer characteristics of R-290, and is focused on pressure gradient and heat transfer coefficient of the refrigerant flow inside horizontal smooth minichannel with inner diameter of 3.0 mm and length of 2000 mm. The direct heating method applied for supplying heat to the refrigerant where the test tube was uniformly heated by electric current which was applied to the tube wall. The experiments were conducted with R-290 with purity of 99.99% at saturation temperature of 0 to $10^{\circ}C$. The range of mass flux is $50{\sim}250kg/m^2s$ and heat flux is $5{\sim}20kW/m^2$. The heat transfer coefficients of R-290 increases with increasing mass flux and saturation temperature, wherein the effect of mass flux is higher than that of the saturation temperature, whereas the heat flux has a low effect on increasing heat transfer coefficient. The significant effect of mass flux on heat transfer coefficient is shown at high quality, the effect of heat flux on heat transfer coefficient at low quality shows a domination of nucleate boiling contribution. The heat transfer coefficient of the experimental result was compared with six existing heat transfer coefficient correlation. Zang et al.'s correlation(2004) gave the best prediction of heat transfer coefficient.

  • PDF

A study on condensation heat transfer performance in microchannel tube (마이크로 채널 관에서의 응축 열전달 성능에 관한 연구)

  • Lee, Jeong-Kun
    • Design & Manufacturing
    • /
    • v.13 no.2
    • /
    • pp.22-29
    • /
    • 2019
  • This study conducted a research as to condensation heat transfer by using three types of flat micro multi-channel tubes with different processing of micro-fin and number of channels inside the pipes and different sizes of appearances. In addition, identical studies were conducted by using smoothing circular tubes with 5mm external diameter to study heat transfer coefficient. The condensation heat transfer coefficient showed an increase as the vapor quality and mass flux increased. However, each tube shows little differences compared to 400kg/m2s or identical in case the mass flux are 200kg/m2s and 100kg/m2s. The major reason for these factors is increase-decrease of heat transfer area that the flux type of refrigerant is exposed to the coolant's vapor with the effect of channel aspect ratio or micro-fin. In addition, the heat transfer coefficient was unrelated to the heat flux, and shows a rise as the saturation temperature gets lower, an effect that occurs from enhanced density. The physical factor of heat transfer coefficient increased as the channel's aspect ratio decreased. Additionally, the micro pin at the multi-channel type tube is decided as a disadvantageous factor to condensation heat enhancement factor. That is, due to the effect of aspect ratio or micro-fin, the increase-decrease of heat transfer area that the flux type of a refrigerant is exposed to the vapor is an important factor.

Numerical Analysis of Optimum Air-Layer Thickness in a Double Glazing Window (이중창 공기층의 최적두께에 관한 수치해석)

  • Hwang Ho June;Choi Hyoung Gwon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.2
    • /
    • pp.191-199
    • /
    • 2005
  • Double pane window system, in which an air layer with a finite width is filled between glasses, is used in order to increase the insulation efficiency. In the present study, a conjugate heat transfer problem of a double pane window system has been studied numerically in order to investigate the effect of an air layer on the heat transmittance of the double pane window system using a finite element method based on P2P1 basis function. In this study on the conjugate heat transfer of a double pane window system, numerically predicted Nusselt numbers with or without conjugate heat transfer effect have been compared with an available existing empirical formula. It has been found that a Nusselt number from an existing formula for an enclosed space is different from that obtained from the present conjugate heat transfer analysis mainly due to the effects of a very high aspect ratio and conjugate heat transfer mechanism. Furthermore, it has been shown that the numerically estimated optimal air thickness of the double pane window system with conjugate heat transfer effect is a little bit longer than that obtained without considering conjugate heat transfer effect.

A Study on the Effect of the Heat Transfer Surface Position to the Condensation heat Transfer (전열면 자세가 응축 열전달에 미치는 영향에 관한 연구)

  • 조시기
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.1
    • /
    • pp.25-29
    • /
    • 2001
  • A study has been conducted to investigate the effect of the heat transfer surface position in the range of dropwise condensation, filmwise condensation, and glacial condensation. For dropwise condensation promoter, the heat transfer surface was evaporated by gold. As a result, heat transfer rate is almost same where the position of heat transfer surface is between 45 and 135 degree. It is found that heat transfer rate was reduced as subcooled degree was increased. And it is also found that if the subcooled degree becomes lower, the position of heat transfer surface is more effective. Adversely, if the subcooled degree becomes higher, the effectiveness of surface position is getting relatively lower. Regardless of the position, the transition temperatures from dropwise condensation to filmwise condensation is in the vicinity of 80K.

  • PDF

A Study on the Drag Reduction Effect and Heat Transfer Enhancement of Non ionized Surfactant and Water Mixture in a Circular Pipe Flow (비이온계 계면활성제 첨가수에 대한 관내 유동저항 감소 및 열전달 촉진에 관한 연구)

  • Kim, Myoung-Jun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.31 no.5
    • /
    • pp.552-557
    • /
    • 2007
  • This paper has dealt with the effect of non ionized surfactant and water mixture on drag reduction and heat transfer enhancement in a circular pipe flow with experimentally. The test section was consisted of stainless steel pipe with inside diameter of 16mm. The wire coil was used to increase heat transfer in a pipe and the on ionized surfactant(Oleyl Dihydroxyethyl Amino Oxide, ODEAO) was used to reduce the drag force of water mixture with surfactant. The main parameters of this experiment were diameter and pitch of wire coil and the ratio of test section length and horizontal wire coil length. In this experiment, the acquired results were 1) Drag reduction effect existed in this ODEAO-water mixture, 2) Friction factor and heat transfer were increased with insertion the heat transfer enhancement coil, 3) With increasing of pitch ratio, heat transfer was decreased, and 4) Heat transfer was decreased by the decreasing of inserting coil diameter.

The Effect of PVE Oil on the Evaporation/Condensation Heat Transfer Performance of Fin-tube Heat Exchanger (핀-튜브 열교환기에서 PVE오일이 증발/응축 열전달 성능에 미치는 영향)

  • Lee, Hyun-Woo;Jeong, Young-Man;Lee, Jae-Keun;Park, Nae-Hyun
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.1067-1072
    • /
    • 2009
  • In vapor compression systems which use refrigerant as a working fluid, the oil is commonly used for compressor lubrication. Since the presence of lubrication oil can change the characteristics properties of refrigerant, the oil affects the heat transfer performance of heat exchanger to a large extent. In this paper, we focus on the effect of PVE oil experimentally on heat transfer performance of the fin-tube heat exchangers which use R410A as a refrigerant. To evaluate the heat transfer performance, the refrigerant to air type test facility chamber has been used. Fin-tube heat exchanger with grooved has been tested while according to the oil mass fraction variation from nearly zero to 1.7 wt%. It was found that the low level of oil mass fraction has an obvious effect on heat transfer performance, while the high level seems no significant influence. The influence of the oil mass fraction to heat transfer performance, however, is different between evaporation and condensation.

  • PDF