• Title/Summary/Keyword: Heat transfer coefficient of CO2

Search Result 86, Processing Time 0.025 seconds

A Study on the Condensation Performance for the Horizontal Heat Transfer Tubes with Various Fin Attached (형상이 다른 수평 원형 전열관의 응축 성능에 관한 연구)

  • Han, Kyu-Il;Park, Jong-Un
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.4 no.1
    • /
    • pp.47-61
    • /
    • 1992
  • An experimental study was carried out to investigate the condensation performance for the horizontal cylindrical heat transfer tube with various fin attached using R-11 vapor. The heat transfer tube used in this study was supplied by SUNG HYUNG METAL CO., LTD. Four different types of heat transfer tubes (plain tube, SH-CYR tube, thermocor tube and thermoexcel tube) were used. Each tube was surrounded by circular acrylate tube, and R-11 gas heated by boiler flows into the acrylate tube. Cooling water counter-flows in heat transfer tubes. Heat transfer coefficient of the plain tube from measured data was compared with those of three other tubes. The results are summarized as follows: 1. As the cooling water temperature decreased, the liquid film of R-11 turned to droplet drop on the top surface of the horizontal tube. 2. Heat transfer coefficient calculated theoretically was higher than that obtained from the experimental data. 3. As far as the condensation concerns the thermocor tube is the highest, the SH-CYR tube is the second, and the thermoexcel tube is the third excluding the plain tube.

  • PDF

Heat Transfer Characteristics of Supercritical $CO_2$ in Helical Coil Gas Coolers on the Change of Coil Diameters (코일직경변화에 따른 헬리컬 코일형 가스냉각기내 초임계 이산화탄소의 냉각열전달 특성)

  • Son, Chang-Hyo
    • Journal of the Korean Institute of Gas
    • /
    • v.11 no.3
    • /
    • pp.44-48
    • /
    • 2007
  • The cooling heat transfer characteristics of supercritical $CO_2$ in a helical coil gas cooler on the change of coil diameters are experimentally investigated. The main components of the refrigerant loop are a receiver, a variable speed pump, a mass flow-meter, a pre-heater and a helical coil gas cooler (test section). The test sections are made of a copper tube which the inner diameter is 4.55 mm and the helical coil diameters are done of 26.75 mm and 41.35 mm. The mass fluxes of refrigerant are varied from 200 to 800 [$kg/m^2s$] and the inlet pressures of gas cooler are 7.5 to 10.0 (MPa). A gas cooler with helical coil diameter of 26.75 mm has larger heat transfer coefficient than that of 41.35 mm. Also, when compared with experimental data and published correlations avaliable, most of correlations are under-predicted, but Pitla published correlations avaliable, most of correlations are under-predicted, but Pitla et al.'s correlation shows a relatively good coincidence with the experimental data except the region of pseudo critical temperature.

  • PDF

Simulation Study on the Performance Characteristics of $CO_2$ microchannel gascooler with Operation Conditions ($CO_2$용 마이크로채널 가스쿨러의 운전조건 변화에 따른 성능특성에 관한 해석적 연구)

  • Shin, Eun-Sung;Bae, Kyung-Jin;Kim, Byeong-Cheol;Cho, Hong-Hyun
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.1090-1095
    • /
    • 2009
  • The purpose of this study is to determine the performance characteristics for the micro-channel gascooler with various operating conditions. The performance of four kind of HX models were analyzed and optimized with the variation of refrigerant inlet temperature, air velocity, outdoor temperature. As a result, Model B showed the maximum capacity and high performance could be maintained for wide operating conditions. Beside, the micro-channel heat exchanger could be appled to $CO_2$ system appropriately because of a small pressure drop and high heat transfer rate.

  • PDF

Cooling Characteristics on the Forced Convection of an Array of Electronic Components in Channel Flow (I) - The Effect of H/B (without the Heat Sink) - (채널 유동장 내에 배열된 전자부품의 강제대류 냉각 특성에 관한 연구(I) -채널과 발열부품의 높이 비(H/B)의 영향(히트싱크가 부착되지 않은 경우)-)

  • Kim, Kwang-Soo;Yang, Jang-Sik
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.1
    • /
    • pp.73-80
    • /
    • 2006
  • Present study is concerned with an experimental study on the cooling characteristics of heat-generating components arranged in channels which are made by printed circuit boards. To assess the thermal performance of the heat-generating components arranged by $5\times11$ in flow channel, three variables are used: the velocity of the fluid at the entrance, the height of channel, and row number of the component. The cooling characteristics of the heat-generating components such as the surface temperature rise, the adiabatic temperature rise, the adiabatic heat transfer coefficient, and the effect of thermal wake are compared with the result of the experiment and the numerical analysis. Based on the experiment analysis, some conclusions can be drawn: First of all, the experiment and numerical analysis are identical comparatively; the heat transfer coefficient increases as H/B decreases. Howeve., when H/B is over 7.2, the effect of H/B is rather trivial. The effect is the biggest at the first component from the entrance, and it decreases until the fully developed flow, where it becomes very consistent. The thermal wake function calculated for each row decreases as H/B increases.

Heat Transfer and Pressure Drop Characteristics of Secondary Refrigerants Applying to Indirect Refrigeration System (간접 냉동 시스템용 2차 냉매의 열전달과 압력강하 특성)

  • Oh, Hoo-Kyu;Son, Chang-Hyo;Jo, Hwan;Yi, Wen-Bin;Jeon, Min-Ju
    • Journal of Power System Engineering
    • /
    • v.17 no.4
    • /
    • pp.45-50
    • /
    • 2013
  • This paper presents the comparison of heat transfer and pressure drop of various secondary refrigerants (single-phase and two-phase) in the indirect refrigeration system. The main results were summarized as follows: In case of heat transfer, it is useful to use secondary refrigerants in low evaporating temperature region and the heat transfer coefficient of single-phase is larger than two-phase secondary refrigerants. In case of pressure drop, it is useful to use secondary refrigerants in high evaporating temperature region and the pressure drop of two-phase is smaller than single-phase secondary refrigerant. Also, $CO_2$ is the best useful because pressure drop of $CO_2$ among the secondary refrigerants is the smallest.

An Experimental Investigation on the Airside Performance of Fin-and-Tube Heat Exchangers Having Sinusoidal Wave Fins (사인 웨이브 휜-관 열교환기의 공기측 성능에 관한 실험연구)

  • Kim, Nae-Hyun;Cho, Jin-Pyo;Yoon, Baek
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.4
    • /
    • pp.355-367
    • /
    • 2004
  • The heat transfer and friction characteristics of the heat exchangers having sinusoidal wave fins were experimentally investigated. Twenty-nine samples having different waffle heights (1.5 mm and 2.0 m), fin pitches (1.3mm to 1.7mm) and tube rows (one to three) were tested. Focus was given to the effect of the waffle configuration (herringbone or sinusoidal) on the heat transfer and friction characteristics. Results show that the sinusoidal wave geometry provides higher heat transfer coefficients and friction factors than the herringbone wave geometry, and the difference increases as the number of row increases. The i/f ratios of the herringbone wave geometry, however, are larger than those of the sinusoidal wave geometry. Compared to the herringbone wave geometry, the sinusoidal wave geometry yielded a weak row effect, which suggests a superior heat transfer performance at the fully developed flow region. Possible explanation is provided considering the flow characteristics in wavy channels. Within the present geometric range, the effect of the waffle height on the heat transfer coefficient was not prominent. The effect of the fin pitch was also negligible. Existing correlations highly overpredicted both the heat transfer coefficients and friction factors. A new correlation was developed using the present data.

Evaporation pressure drop of $CO_2$ in a horizontal tube (수평관내 이산화탄소의 증발 압력강하)

  • Lee Dong-Geon;Son Chang-Hyo;Oh Hoo-Kyu
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.29 no.5
    • /
    • pp.552-559
    • /
    • 2005
  • The evaporation pressure drop of $CO_2$ (R-744) in a horizontal tube was investigated experimentally. The experiments were conducted without oil in a closed refrigerant loop which was driven by a magnetic gear pump. The main components of the refrigerant loop are a receiver, a variable-speed pump. a mass flow meter, a pre-heater and evaporator (test section). The test section consists of a smooth. horizontal stainless steel tube of 7.75 mm inner diameter. The experiments were conducted at mass flux of 200 to $500\;kg/m^{2}s$, saturation temperature of $-5^{\circ}C\;to\;5^{\circ}C$. and heat flux of 10 to $40\;kW/m^2$. The test results showed the evaporation pressure drop of $CO_2$ are highly dependent on the vapor qualify, heat flux and saturation temperature. The evaporation pressure drop of $CO_2$ is very lower than that of R-22. In comparison with test results and existing correlations. the best fit of the present experimental data is obtained with the correlation of Choi et al. But existing correlations failed to predict the evaporation pressure drop of $CO_2$. Therefore, it is necessary to develop reliable and accurate predictions determining the evaporation pressure drop of $CO_2$ in a horizontal tube.

Condensing Heat Transfer Characteristics of R-22 and R-134a in Small Diameter Tubes (세관내 R-22와 R-134a의 응축 전열 특성에 관한 연구)

  • Hong, Jin-U;No, Geon-Sang;Jeong, Jae-Cheon;O, Hu-Gyu
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.1
    • /
    • pp.54-61
    • /
    • 2001
  • Condensing heat transfer coefficients of R-22 and R-134a were measured in smooth, horizontal copper tubes with inner diameters of 1.77mm, 3.36mm, and 5.35mm, respectively. The experiments were conducted in the closed loop, which was driven by a magnetic gear pump. Data are presented for the following range of variables : mass velocity from 200 to 500kg/$m^2$.s and quality from 0 to 1.0. The heat transfer coefficients in the small diameter tubes (ID < 7mm) were observed to be strongly affected by various diameters and the heat transfer characteristics in the small diameter tubes differed from those in the large diameter tubes. Heat transfer coefficients in the small diameter tubes are higher than those in the large diameter tubes at the same experimental condition. It was found that some well-known previous correlations(Shahs correlation and Cavallini-Zecchins correlation) were not suitable for small diameter tubes.

Performance of a Latent Heat Storage System Using Two-Phase Closed Thermosyphon(I) - the Case of Constant Heat Input - (열싸이폰을 이용한 잠열축열시스템의 성능실험(I) - 열주입량이 일정한 경우 -)

  • Kim, Tae-Il;Kim, Ki-Hyun
    • Solar Energy
    • /
    • v.12 no.3
    • /
    • pp.28-36
    • /
    • 1992
  • The performance of a latent heat storage system using a thermosyphon as the heat transfer device between the heat source and the phase change material was investigated experimentally. In order to increase the effective conductivity of the phase change material, layers of copper wire mesh were immersed in the paraffin wax(Sunoco P-116) in such a way that they also may be considered as fins of the thermosyphon. The important results are as follows : (1) The void space of the wire mesh allowed the convection to occur, thus enhanced the performance of the system : (2) The increase of the number of layer of wire mesh increased the conduction heat transfer. However, it also had adverse effect of subduing convective motion of liquid wax : and (3) Overall heat transfer coefficient and thermosyphon conductance increased with the increase of the number of layer of wire mesh, whereas the heat transfer coefficient between the thermosyphon and the wax decreased.

  • PDF

A Study on the Heat Transfer Characteristics According to the Impinging Distance of Stagnation Point in Syngas Impinging Jet Flames (합성가스 충돌제트화염에서 충돌거리에 따른 정체점에서의 열전달 특성 연구)

  • Sim, Keunseon;Kim, Dongchan;Choi, Jongmin;Lee, Keeman
    • 한국연소학회:학술대회논문집
    • /
    • 2014.11a
    • /
    • pp.225-226
    • /
    • 2014
  • An experimental study has been conducted to investigate the heat transfer characteristics of syngas/air mixture impinging jet flame with 10% hydrogen content. Effects of impinging distance, Reynolds number as major parameters on surface temperature of stagnation point were examined experimentally by the data acquisitions from k-type thermocouple. There were 2 times of maximum peak point of stagnation point with respect to the impinging distance for the investigation. As reynolds number increases, the nusselt number and convective heat transfer coefficient increased accordingly.

  • PDF