• 제목/요약/키워드: Heat source temperature

검색결과 1,194건 처리시간 0.026초

에너지플러스 시뮬레이션을 통한 하천수 열원 히트펌프 시스템의 적용 가능성 분석 (An Applicability Analysis of River Water Source Heat Pump System using EnergyPlus Simulation)

  • 손병후
    • 한국지열·수열에너지학회논문집
    • /
    • 제18권2호
    • /
    • pp.10-21
    • /
    • 2022
  • A water source heat pump (WSHP) system is regarded as an energy-efficiency heating and cooling supply system for buildings due to its high energy efficiency and low greenhouse gas emissions. Recently, water sources such as river water, lake water, and raw water are attracting attention as heat sources for a heat pump system in Korea. This paper analyzed the applicability of a river water source heat pump system (RSHP). The river water temperature level was compared with the outdoor air and ground temperature levels to present applicability. In addition, the cooling and heating performance were compared through a simulation approach for the RSHP and a ground source heat pump (GSHP) applied to a large-scale office building. To compare the temperature level, the actual data were applied to the river water and the outdoor air, while the simulation results were applied to the ground circulation water. The results showed that the change in river water temperature throughout the year was similar to the change in outdoor air temperature. However, unlike the outdoor air temperature, the difference between the hourly and daily average river water temperatures was not large. The temperature level of river water was lower during the heating season and somewhat higher during the cooling season than that of the ground circulation water. Finally, the performance of the RSHP system was 13.4% lower than that of the GSHP system on an annual-based.

에탄올에 의한 TMA-포접화합물의 냉각특성 개선에 대한 연구 (A Study on the Cooling Characteristics Improvement of TMA-Water Clathrate Compound by Ethanol)

  • 이종인;김창오
    • 한국자동차공학회논문집
    • /
    • 제15권1호
    • /
    • pp.23-28
    • /
    • 2007
  • This study aims to find out cooling characteristics of TMA(Tri-Methyl-Amine, $(CH_3)_3N$) 25wt%-water clathrate compound with ethanol($CH_3CH_2OH$) such as supercooling, phase change temperature and specific heat. For this purpose, ethanol is added as per weight concentration and cooling experiment is performed at $-6{\sim}-8^{\circ}C$, cooling heat source temperature, and it leads the following result. (1) Phase change temperature is decreased due to freezing point depression phenomenon. Especially, it is minimized as $3.8^{\circ}C$ according to cooling source temperature in case that 0.5wt% of ethanol is added. (2) If 0.5wt% of ethanol is added, average supercooling degree is $0.9^{\circ}C$ and minimum supercooling is 0.8, $0.7^{\circ}C$ according to cooling heat source temperature. The restraint effect of supercooling is shown. (3) Specific heat shows tendency to decrease if ethanol is added. It is $3.013{\sim}3.048\;kcal/kg^{\circ}C$ according to cooling heat source temperature if 0.5wt% of ethanol is added. Phase change temperature higher than that of water and inhibitory effect against supercooling can be confirmed through experimental study on cooling characteristics of TMA 25wt%-water clathrate compound by adding additive, ethanol. This can lead to shorten refrigerator operation time of low temperature latent heat storage system and improve COP of refrigerator and efficiency of overall system. Therefore energy can be saved and efficiency can be improved much more.

외기 온도 제어 방식을 적용한 지열 히트펌프 시스템의 냉방 성능 분석 (Cooling Performance Analysis of Ground-Source Heat Pump System with Capacity Control with Outdoor Air Temperature)

  • 손병후
    • 한국지열·수열에너지학회논문집
    • /
    • 제17권4호
    • /
    • pp.68-78
    • /
    • 2021
  • In order to solve the increasing deterioration of the energy shortage problem, ground-source heat pump (GSHP) systems have been widely installed. The control method is a significant component for maintaining the long-term performance and for reducing operation cost of GSHP systems. This paper presents the measurement and analysis results of the cooling performance of a GSHP system using capacity control with outdoor air temperature. For this, we installed monitoring equipments including sensors for measuring temperature, flow rate and power consumption, and then monitored operation parameters from July 9, 2021 to October 2, 2021. From measurement results, we analyze the effect of capacity control with outdoor air temperature on the cooling performance of the system. The average performace factor (PF) of the heat pump was 6.95, while the whole system was 5.54 over the measurement period. Because there was no performance data of the existing GSHP system, it was not possible to directly compare the existing control method and the outdoor air temperature method. However, it is expected that the performance of the entire system will be improved by adjusting the temperature of cold water produced by the heat pump, that is, the temperature of cold water on the load side according to the outside air temperature.

강변여과수 열원 히트펌프 온실난방 성능시험 (Estimation of Greenhouse Heating performance for Ground Filtration Water Source Heat Pump)

  • 문종필;이성현;권진경;강연구;이수장
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2011년도 춘계학술대회 초록집
    • /
    • pp.200.2-200.2
    • /
    • 2011
  • This study was carried out in order to estimate the greenhouse performance for Ground filtration water source heat pump which was installed for supplying the heat to the paprika greenhouse in Jinju city. Experimental area of Greenhouse was $3,300m^2$, For keeping the heat from greenhouse, single plastic covering and double thermal screen was installed. With considering all of greenhouse insulation condition and designed heatng temperature, heating capacity for experimental greenhouse was calculated as 320,000kcal/hr. Coefficient of performance(COP) of Ground filtration water source heat pump was gauged and greenhouse heating performance was tested from Febuary 1 to Febuary 28 in 2011. The result showed that COP of heat pump was in the range of 3.7~4.7 and COP of heating system was in the range of 3.0~3.5. The vaule of COP was very high and the temperature inside greenhouse was well corresponded to the setting temperature of greenhouse environment controlling system. lots of Ground filtration water made the the number of well fewer and the expense for installing heating system cheaper than that of geothermal system used custmarily. and this system went beyond the limitation of intaking amount of groundwater in normal Groundwater source heat pump.

  • PDF

지열원 및 수열원 비율에 따른 복합열원 히트펌프시스템 성능 평가 연구 (A Study on the Performance Evaluation of Combined Heat Pump System according to the Ratio of Ground Heat Source and Water Heat Source)

  • 박시훈;고유진;민준기
    • 한국지열·수열에너지학회논문집
    • /
    • 제17권2호
    • /
    • pp.11-19
    • /
    • 2021
  • In this study, combined heat source heat pump system was implemented with 4 single heat source heat pumps each applied with a geothermal source and a water source. Five cases (Case1~Case5) were configured to conduct a performance comparison and analysis of the combined heat source heat pump system. First of all, as a result of analyzing the heat source, the case when 4 ground heat sources were applied (Case1) showed a uniform EST(Entering Source Temperature) distribution throughout the year since it is less affected by outside air compared to the case when 4 water heat sources were applied (Case5). In both winter and summer, the ground heat source maintained higher EST than the water heat source. Therefore, the system with high ratio of geothermal sources is advantageous for heating, and with high ratio of water heat sources is advantageous for cooling.

Temperature Analysis of Nozzle in a FDM Type 3D Printer Through Computer Simulation and Experiment

  • Park, Jung Hyun;Lyu, Min-Young;Kwon, Soon Yong;Roh, Hyung Jin;Koo, Myung Sool;Cho, Sung Hwan
    • Elastomers and Composites
    • /
    • 제51권4호
    • /
    • pp.301-307
    • /
    • 2016
  • Additive manufacturing (AM), so called 3D Printing is a new manufacturing process and is getting attraction from many industries. There are several methods of 3D printing. Among them fused deposition modeling (FDM) type is most widely used by reason of cheap maintenance, easy operation and variety of polymeric materials. Articles manufactured by 3D printing have weak deposition strength compared with conventionally manufactured products. Deposition strength of FDM type 3D printed article is highly dependent of deposition temperature. Subsequently the nozzle temperature in the FDM type 3D printing is very important and it is controlled by heat source in the 3D printer. Nozzle is connected with heat block and barrel, and heat block contains heat source. Nozzle becomes hot through heat conduction from heat source. Nozzle temperature has been predicted for various thermal boundary conditions by computer simulation and compared with experimental measurement. Nozzle temperature highly depends upon thermal conductivities of heat block and nozzle. Simulation results are good agreement with experiment.

용접중 이동하는 열원에 의한 온도분포에 관한 연구 (A Study on the Distribution of Temperature by Moving Heat Source during Welding)

  • 왕지석
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제6권2호
    • /
    • pp.51-68
    • /
    • 1982
  • A method of calculation of temperature distribution during welding was studied and compared with the existing formulas and experimental results. In contrast to the existing formulas which are founded on the suppositions that the heat source is a point and that the dimensions of welded pieces are infinite, we tried to make the distribution of calorific density of heat source approach reality more closely, so we considered it as a normal distribution of Gauss, and we presented the formulas for calculation of temperature during welding. We also used the principle of superposition for the temperature calculations of finite welded pieces. We compared the formulas presented in this paper with the existing formulas by calculations for the welding of various materials, and considerable differences around the heat source were convinced. The thermal cycles of various points were traced through the welding experiments for the mild steel, and they were compared with the results of calculations.

  • PDF

돌출된 열원이 부착된 수직 채널내 복합열전달 (Conjugate Heat Transfer in a Vertical Channel with Protrunding Heat Source)

  • 김의광;백병준;조병수
    • 대한기계학회논문집B
    • /
    • 제20권2호
    • /
    • pp.741-751
    • /
    • 1996
  • The coupled conduction and convection heat transfer from the protruding heat source in a vertical channel is numerically investigated. Conjugate solution of the two-dimensional energy equation is obtained for the incompressible air flow over the rectangular block with local heat source. It was found that several recirculation zones and separation bubble near the block were related to Re and Gr. And the results show that fractions of the heat transfer through each of the block face, maximum temperature of the block and the relative effect of each parameter on the maximum temperature and heat transfer.

해수열원 캐스케이드 열펌프시스템의 운전 특성에 관한 실험적 연구 (An Experimental Study on the Performance of a Sea Water Heat Source Cascade Heat Pump)

  • 김지영;백영진;장기창;박성룡;나호상;이재훈
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.1969-1973
    • /
    • 2007
  • The purpose of this study is to investigate the performance of a sea water heat source cascade heat pump system. R717(Ammonia) is used for a low-stage working fluid while R134a is for a high-stage. In order to gain a high temperature supply water in winter season, the system is designed to perform a cascade cycle. In this study, two experiments were carried out. One is a system starting test from the low load temperature of $10^{\circ}C$. The other is a system performance investigation over the R717 compressor capacity changes. Experimental results show that when it starts from the low load temperature, the suction temperature of the low-stage compressor is higher than that of a high-stage. The system performance increases when a water source temperature or a low-stage compressor rotational frequency goes higher.

  • PDF

하천수 열원 열펌프 시스템의 성능 특성 및 경제성 평가 (Performance Characteristics and Economic Assessment of a River Water: Source Heat Pump System)

  • 박차식;정태훈;박홍희;김용찬
    • 설비공학논문집
    • /
    • 제21권11호
    • /
    • pp.621-628
    • /
    • 2009
  • The objectives of this study are to analyze the performance of a river water-source heat pump and to carry out economic assessment for the heat pump. The COP of the river water-source heat pump was 3-21% higher than that of the air-source heat pump because river water provides stable operating temperature compared with air temperature throughout the year. The economic analysis was carried out by comparing the initial and operating cost of the river water-source heat pump with those of the conventional air-source heat pump. The ratio of the life cycle operating cost to the life cycle cost increased with the increase of building capacity. The payback period was found to be less than 3.5 years when the capacity of the river water-source heat pump was larger than 10 RT.