• Title/Summary/Keyword: Heat source/sink

Search Result 124, Processing Time 0.023 seconds

Analysis of a Heat Engine with the Irreversibility by the Heat Transfer (열전달 에 의한 비가역성 을 고려한 열기관 성능 해석)

  • 김성진;정평석;노승탁
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.8 no.6
    • /
    • pp.564-568
    • /
    • 1984
  • An analysis has been performed for the internally reversible heat engine with the finite heat transfer rate. In the heat engine operating between two fluid streams, there exist the optimum temperatures at which the engine has maximum power. The optimum values can be expressed in terms of the temperatures of the heat source and sink. The condition for the maximum power can be explained as the minimum entropy generation by the finite heat transfer rate.

An Experimental Study on Heat Transfer Characteristics of a Thermal Diode Type Enclosure with a Guide Vane

  • Kim, Suk-Hyun;Jang, Young-Keun
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.9 no.4
    • /
    • pp.10-16
    • /
    • 2001
  • An experimental study for free convective heat transfer in a thermal diode type enclosure is presented. The thermal diode is a device which allows heat to be transferred in one direction by convection due to density difference of the fluid, and consists of a rectangular-paralle-logrammic enclosure with a guide vane. It is used as heat collection system of solar energy due to its simple construction and low cost. Experimental parameters were guide vane thickness, the inclination angles of the parallelogrammic enclosure, and the lengths of the rectangular enclosure part. The parameter range of the flux Rayleigh numbers was $2.4\times{10}^8$~$9.8\times{10}^8$. The heat transfer rate of this system was shown 10~47% higher than that of other earlier research results without the guide vane. The correlation for fixed $\phi=60^\circ$ was obtained, Nu=0.0037(Ra^*)^{0.429}(d^*)^ {0.050}(Lr/H)^{0.0415}$.

  • PDF

OPTIMAL DESIGN FOR COOLING SYSTEM OF DRIVING UNITS FOR HYBRID VEHICLES (하이브리드 자동차 구동시스템용 냉각 유로 최적화에 관한 연구)

  • Lee, K.H.;Kim, Jae-Won;Ahn, E.Y.
    • Journal of computational fluids engineering
    • /
    • v.14 no.1
    • /
    • pp.62-69
    • /
    • 2009
  • The cooling system for electric devices of hybrid vehicles is examined. The present system is composed of coolant paths, inlet diffuser and heat sinks whose shapes are diamond and circular. In this work, inlet duct and fin arrays are combined in proposed models and examined by numerical calculations. Nusselt number and Reynolds number are considered for heat transfer performance. Main focus lies on the looking for optimal model for the cooling system adopted to compact driving module of a hybrid vehicle. The optimal model shows uniform flow patterns in the inlet diffuser and secondary flows after the fins attached to heat source. It is found that the vortical flows around the heat sinks are effective for heat removal mechanism.

Heating and Cooling Performance of a Ground Coupled Heat Pump System with Energy-Slab (에너지슬래브 적용 지열원 열펌프 시스템의 성능 특성에 관한 실증 연구)

  • Choi, Jong-Min
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.24 no.2
    • /
    • pp.196-203
    • /
    • 2012
  • Energy foundations and other thermo-active ground structure, energy wells, energy-slab, and pavement heating and cooling represent an innovative technology that contributes to environmental protection and provides substantial long-term cost savings and minimized maintenance. This paper focuses on earth-contact concrete elements that are already required for structural reasons, but which simultaneously work as heat exchangers. Pipes, energy slabs, filled with a heat carrier fluid are installed under conventional structural elements, forming the primary circuit of a geothermal energy system. The natural ground temperature is used as a heat source in winter and a heat sink in summer. The geothermal heat pump system with energy-slab represented very high heating and cooling performance due to the stability of EWT from energy slab. However, the performance of it seemed to be affected by the atmospheric air temperature.

Development of Water-Source Heat Pump System Using Riverbank Filtration Water on the Waterfront (친수지역 강변여과수 열원을 활용한 냉난방시스템 개발)

  • Cho, Yong;Kim, Dea Geun;Moon, Jong-Pil
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.201.2-201.2
    • /
    • 2011
  • A water-source heat pump system has been developed for cooling and heating of a green house on the waterfront in Jinju. In order to supply a heat source/sink of water in alluvium aquifer to the heat pump system, the riverbank filtration facility (two pumping wells and one recharge well) for water intake and injection has been constructed. To pump and recharge water sufficiently, the geometric design such as depth and diameter for the wells have been completed, and details of the well such as slot size and length of the screen and filter pack size have been designed based on the practical and theoretical design method including D30 technique. For the investigation of the hydrogeological characteristics, step-drawdown test, long-term pumping test, and recovery test have been carried out for two developed pumping wells. Step-drawdown test has been performed on 4 step flowrates of 150, 300, 450, $600m^3$/day for 1 hour, and long-term pumping test on flowrate of $500m^3$/day for 24 hours, and recovery test for 6 hours. Since the underground water filtrated by riverbank is flowing smoothly into the well, the water level goes down slightly for the long-term test. Consequently, the stable pumping flowrate for two pumping well has been predicted at least over $1,647m^3$/day which is larger than the flowrate of $1,000m^3$/day for a 60 RT heat pump system.

  • PDF

A Study on the Characteristics of Heat transfer of Fire Clay with Microwave Heating (MICROWAVE 가열에 의한 내화 점토의 열전달 특성 연구)

  • Lee, S.J.;Kim, Y.J.;Kim, C.J.;Sung, K.
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.202-206
    • /
    • 2001
  • The characteristics of heat transfer on the fire clay with microwave heating are numerically investigated using finite element method. The modelled regular hexahedron chamber($50cm{\times}50cm{\times}50cm$) filled with air consists of vertical heat source and sink walls, a fire clay model, and adiabatic plates at the top and bottom walls. With different geometrical aspect ratios of the fire clay model, the heat energy distribution is throughly investigated. The optimal shape of the fire clay for given chamber geometry and microwave power is analyzed.

  • PDF

Second Law Optimization of Water-to-Water Heat Pump System

  • Kim, Kyu-Hyung;Woo, Joung-Son;Lee, Se-Kyoun
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.1
    • /
    • pp.122-128
    • /
    • 2003
  • This paper presents a thermodynamic analysis of heat pump system using water as a heat source and heat sink. The primary object in this study is the optimization of exergetic efficiency. Two different systems, 2-stream and 1-stream system, are analyzed in detail. Mass flow ratio (the ratio of mass flow rate of water through evaporator to that through condenser) is identified as the most important parameter to be optimized. It is shown that there exists an optimum mass flow ratio to maximize exergetic efficiency. The variation of optimum exergetic efficiency of 2-stream system is quite small and the value lies between 0.2∼0.23 for the range of investigation in this study. However, far better performance can be obtained from 1-stream system. This means considerable irreversibilities are generated through condenser of the 2-stream system. The effects of adiabatic efficiency of compressor-motor unit on the overall system performance are also examined in the analysis.

A Study on the Characteristics of Heat Energy Distribution of Fire-Proof Clay with Microwave Heating Drying (MICROWAVE 가열 건조에 의한 내화 점토의 열에너지 분포 특성 연구)

  • Lee, S.J.;Kim, Y.J.
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.752-757
    • /
    • 2001
  • The characteristics of heat energy distribution on the fire-proof clay with microwave heating drying are numerically investigated using finite element method. The modelled regular hexahedron chamber$(50cm\times50cm\times50cm)$ filled with air consists of vertical heat source and sink walls, a fire-proof clay model, and adiabatic plates on the top and bottom walls. With different geometrical aspect ratios of the fire-proof clay model, the heat energy distribution is throughly investigated. The model gave a good prediction of the microwave heating characteristics of fire-proof clay. The optimal shape of the fire-proof clay for given chamber geometry and microwave power is analyzed.

  • PDF

Boundary layer analysis of persistent moving horizontal needle in Blasius and Sakiadis magnetohydrodynamic radiative nanofluid flows

  • Krishna, Penem Mohan;Sharma, Ram Prakash;Sandeep, Naramgari
    • Nuclear Engineering and Technology
    • /
    • v.49 no.8
    • /
    • pp.1654-1659
    • /
    • 2017
  • The boundary layer of a two-dimensional forced convective flow along a persistent moving horizontal needle in an electrically conducting magnetohydrodynamic dissipative nanofluid was numerically investigated. The energy equation was constructed with Joule heating, viscous dissipation, uneven heat source/sink, and thermal radiation effects. We analyzed the boundary layer behavior of a continuously moving needle in Blasius (moving fluid) and Sakiadis (quiescent fluid) flows. We considered Cu nanoparticles embedded in methanol. The reduced system of governing Partial differential equations (PDEs) was solved by employing the Runge-Kutta-based shooting process. Computational outcomes of the rate of heat transfer and friction factors were tabulated and discussed. Velocity and temperature descriptions were examined with the assistance of graphical illustrations. Increasing the needle size did not have a significant influence on the Blasius flow. The heat transfer rate in the Sakiadis flow was high compared with that in the Blasius flow.

The Optimized Design of a NPC Three-Level Inverter Forced-Air Cooling System Based on Dynamic Power-loss Calculations of the Maximum Power-Loss Range

  • Xu, Shi-Zhou;He, Feng-You
    • Journal of Power Electronics
    • /
    • v.16 no.4
    • /
    • pp.1598-1611
    • /
    • 2016
  • In some special occasions with strict size requirements, such as mine hoists, improving the design accuracy of the forced-air cooling systems of NPC three-level inverters is a key technology for improving the power density and decreasing the volume. First, a fast power-loss calculation method was brought. Its calculation principle introduced in detail, and the computation formulas were deduced. Secondly, the average and dynamic power losses of a 1MW mine hoist acting as the research target were analyzed, and a forced-air cooling system model based on a series of theoretical analyses was designed with the average power loss as a heat source. The simulation analyses proves the accuracy and effectiveness of this cooling system during the unit lifting period. Finally, according to an analysis of the periodic working condition, the maximum power-loss range of a NPC three-level inverter under multi cycle operation was obtained and its dynamic power loss was taken into the optimized cooling system model as a heat source to solve the power device damage caused by instantaneous heat accumulation. The effectiveness and feasibility of the optimization design based on the dynamic power loss calculation of the maximum power-loss range was proved by simulation and experimental results.