• 제목/요약/키워드: Heat source/sink

검색결과 124건 처리시간 0.024초

Heat Transfer from a Porous Heat Sink by Air Jet Impingement (충돌공기제트에서의 다공성 방열기의 열전달 특성)

  • 백진욱;김서영;강병하
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • 제13권2호
    • /
    • pp.73-79
    • /
    • 2001
  • Experiment were carried out to investigate the heat transfer characteristics of an aluminum foam block as a porous heat sink on a heat source by a vertical air jet impingement that can be applied for electronics cooling. The performance of the aluminum foam heat sink was evaluated by the convective heat transfer coefficient on the heat source. At a fixed porosity, pore density ($\beta$) of the foam and Reynolds number Re were varied in the range of $\beta$a=10, 20, 40 PPI(Pore Per Inch) and $850\leqRe\leq25000$. A nozzle diameter and the nozzle-to-plate spacing were also varied. It was found that the convective heat transfer was enhanced by the aluminum foam heat sink with lower pore density due to relatively intensified flow through the foam block. The aluminum foam block with much reduced weight shows slightly better performance with larger Nusselt number, compared with the convectional heat sink.

  • PDF

The maximum power condition of the Brayton cycle with heat exchange processes (熱交換 過程 을 考慮한 브레이튼 사이클 의 最大出力條件)

  • 정평석;차진걸;노승탁
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • 제9권6호
    • /
    • pp.795-800
    • /
    • 1985
  • The ideal Brayton cycle has been analyzed with the heat exchange processes between the working fluid and the heat source and the sink while their heat capacity rates are constant. The power fo the cycle can be expressed in terms of a temperature of the cycle and the heat capacity rate of the working fluid. There exists an optimum power condition where the heat capacity rate of the working fluid has a value between those of the heat source and the heat sink, and the cycle efficiency is determined by the inlet temperatures of the heat source and the sink.

An Immersed-Boundary Finite-Volume Method for Simulation of Heat Transfer in Complex Geometries

  • Kim, Jungwoo;Park, Haecheon
    • Journal of Mechanical Science and Technology
    • /
    • 제18권6호
    • /
    • pp.1026-1035
    • /
    • 2004
  • An immersed boundary method for solving the Navier-Stokes and thermal energy equations is developed to compute the heat transfer over or inside the complex geometries in the Cartesian or cylindrical coordinates by introducing the momentum forcing, mass source/sink, and heat source/sink. The present method is based on the finite volume approach on a staggered mesh together with a fractional step method. The method of applying the momentum forcing and mass source/sink to satisfy the no-slip condition on the body surface is explained in detail in Kim, Kim and Choi (2001, Journal of Computational Physics). In this paper, the heat source/sink is introduced on the body surface or inside the body to satisfy the iso-thermal or iso-heat-flux condition on the immersed boundary. The present method is applied to three different problems : forced convection around a circular cylinder, mixed convection around a pair of circular cylinders, and forced convection around a main cylinder with a secondary small cylinder. The results show good agreements with those obtained by previous experiments and numerical simulations, verifying the accuracy of the present method.

Effects of Nozzle Size and Height of Aluminum Foam Heat Sink on Jet Impingement Heat Transfer (충돌제트 열전달에 발포알루미늄 방열기의 높이와 노즐의 크기가 미치는 영향)

  • Kim, Seo-Yeong;Baek, Jin-Uk;Gang, Byeong-Ha
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • 제25권9호
    • /
    • pp.1263-1271
    • /
    • 2001
  • An experimental study is carried out for an aluminum foam heat sink attached to an isolated heat source to evaluate high potential of aluminum foam as a heat sink with impinging jets. The effects of the pore density and the height of the aluminum foam heat sink, the jet Reynolds number, and the nozzle diameter are delineated in comparison with a conventional pin type heat sink. It is found that the aluminum foam with small pores is inefficient for the heat transfer enhancement due to the large flow friction at the given porosity. In the parameter ranges of the present study, the change in the nozzle diameter shows no significant effects on the surface temperature of the aluminum foam heat sink at a given Reynolds number. The heat transfer enhancement is strongly dependent on the jet Reynolds number and shows a maximum value at a moderate Reynolds number.

Performance Analysis of Heat Pump System with Air Source Evaporator and Single Unit Dual Sink Condenser (공기열원 2중히트싱크 열펌프의 성능해석)

  • Woo, J.S.;Lee, S.K.;Lee, J.H.;Park, H.S.
    • Solar Energy
    • /
    • 제18권4호
    • /
    • pp.11-22
    • /
    • 1998
  • Floor panel heating system using hot water is the primary heating system of domestic residential building. This paper presents the results of performance analysis of the heat pump system with air source evaporator and single unit dual sink(SUDSk) condenser. The heat exchanger combines two separated condensers into a single condenser and the object of the SUDSk condenser is to release energy to dual sinks, i.e. air for air heating system and water for panel heating system in one single unit. Simulation program is developed for single unit dual source(SUDS) SUDSk heat pump system and some experimental data are obtained and compared with simulation results. Differences of heating capacity and COP in dual source operating mode are 7% and 8% respectively. Simulation results are in good agreement with test results. Therefore, developed program is effectively used for design and performance prediction of dual source dual sink heat pump system with SUDS evaporator and SUDSk condenser.

  • PDF

The Maximum Power Condition of the Endo-reversible Cycles (내적가역 사이클의 최대출력 조건)

  • 정평석;김수연;김중엽;류제욱
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • 제17권1호
    • /
    • pp.172-181
    • /
    • 1993
  • Pseudo-Brayton cycle is defined as an ideal Brayton cycle admitting the difference between heat capacities of working fluid during heating and cooling processes. The endo-pseudo-Brayton cycle which is a pseudo-Brayton cycle with heat transfer processes is analyzed with the consideration of maximum power conditions and the results were compared with those of the endo-Carnot cycle and endo-Brayton cycle. As results, the maximum power is an extremum with respect to the cycle temperature and the flow heat capacities of heating and cooling processes. At the maximum power condition, the heat capacity of the cold side is smaller than that of heat sink flow. And the heat capacity of endo-Brayton cycle is always between those of heat source and sink flows and those of the working fluids of pseudo-Brayton cycle. There is another optimization problem to decide the distribution of heat transfer capacity to the hot and cold side heat exchangers. The ratios of the capacies of the endo-Brayton and the endo-pseudo-Braton cycles at the maximum power condition are just unity. With the same heat source and sink flows and with the same total heat transfer caqpacities, the maximum power output of the Carnot cycle is the least as expected, but the differences among them were small if the heat transfer capacity is not so large. The thermal efficiencies of the endo-Brayton and endo-Carnot cycle were proved to be 1-.root.(T$_{7}$/T$_{1}$) but it is not applicable to the pseudo-Brayton case, instead it depends on comparative sizes of heat capacities of the heat source and sink flow.w.

Numerical Investigation on the Thermal Performance of a Cooling Device for a CPV Module (고집광 태양광 모듈용 냉각 장치의 열성능에 대한 수치 해석적 연구)

  • Do, Kyu Hyung;Kim, Taehoon;Han, Yong-Shik
    • Journal of the Korean Solar Energy Society
    • /
    • 제35권1호
    • /
    • pp.1-8
    • /
    • 2015
  • In the present study, the effects of the heat spreader thickness and the heat sink size on the thermal performance of a cooling device for a concentrating photovoltaic (CPV) module were numerically investigated. Numerical simulation was conducted by using the simulation tool ICEPAK, commercial software based on the finite volume method. Numerical results were validated by comparing the existing experimental data. The thermal performance of a cooling device, which consisted of a heat spreader and a natural convective heat sink, was evaluated with varying the heat spreader thickness and the heat sink size. The geometric configuration of the natural convective heat sink, such as the fin height, the fin spacing, and the fin thickness, was optimized by using the existing correlation. The numerical results showed that the thermal performance of the cooling device increased as the heat spreader thickness or the heat sink size increased. Also, it was found that the spreading thermal resistance plays an important role in the thermal performance of the cooling device which has the localized heat source.

An overview of Geothermal heat pumps as energy efficient and environmental friendly systems

  • Ahmad, Bilal;Kim, Dong-Hwan;Bahk, Sae-Mahn;Park, Myung-Kyun
    • Proceedings of the SAREK Conference
    • /
    • 대한설비공학회 2008년도 하계학술발표대회 논문집
    • /
    • pp.294-298
    • /
    • 2008
  • The major threats that human being is facing nowadays are the Climate change, depletion of the fossil fuels at a rapid rate and energy costs. A significant portion of world energy consumption is consumed by domestic heating and cooling. And heat pumps, due to their higher utilization efficiencies as compared to conventional heating and cooling systems, offer an attractive solution to this problem. Among the types of heat pumps, the Geothermal heat pump or Ground-source heat pump is a highly efficient, renewable energy technology for space heating and cooling. The Ground-source heat pump uses the Earth as a heat sink in the summer and a heat source in the winter. And the Earth, having a relatively constant temperature, warmer than the air in winter and cooler than the air in summer, offers an excellent heat source in winter and heat sink in summer.. This paper will discuss an overview of the types of heat pumps, its operation, benefits of using geothermal heat pumps, soil characteristics, and overview of some experimental works. Finally it will briefly discuss the opportunity of using these energy efficient systems (EES) in the HVAC market of South Korea.

  • PDF

Performance Evaluation of Heat Sink for Cooling of LED Projector (LED 프로젝터 방열용 히트싱크의 성능평가)

  • Lee, Kyoung-Yong;Choi, Young-Seok;Jeon, Dong-Soon;Kim, Seon-Chang;Son, Kwang-Eun
    • Proceedings of the SAREK Conference
    • /
    • 대한설비공학회 2008년도 하계학술발표대회 논문집
    • /
    • pp.1167-1171
    • /
    • 2008
  • The flow and thermal performance of the skiving and louver fin type heat sinks for the cooling system of the small LED projector were experimentally evaluated. A small fan tester based on AMCA standards was used to control and measure the air flow rate into the heat sink. Three heat blocks were used to simulate the heat and light sources(red, green and blue) of the small LED projector. We measured the pressure drop, temperatures and input power at the specific air flow rate and discussed those results. As a result, it is found that the louver fin type heat sink has higher pressure drop and lower thermal resistance than the skiving type. From the comparison of the temperature of the heat block between skiving and louver fin type, the louver fin type heat sink was found to be more suitable for cooling the high power heat source than skiving type. The thermal performance of the fan-sink(louver fin type) system was discussed with the picture taken by a thermal video.

  • PDF